Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 027401    DOI: 10.1088/1674-1056/ab6552
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A simple tight-binding approach to topological superconductivity in monolayer MoS2

H Simchi1,2
1 Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran;
2 Iran Semicondutor Technology Center, Tehran 19575-199, Iran
Abstract  Monolayer molybdenum disulfide (MoS2) has a honeycomb crystal structure. Here, with considering the triangular sublattice of molybdenum atoms, a simple tight-binding Hamiltonian is introduced (derived) for studying the phase transition and topological superconductivity in MoS2 under uniaxial strain. It is shown that spin-singlet p+ip wave phase is a topological superconducting phase with nonzero Chern numbers. When the chemical potential is greater (smaller) than the spin-orbit coupling (SOC) strength, the Chern number is equal to four (two) and otherwise it is equal to zero. Also, the results show that, if the superconductivity energy gap is smaller than the SOC strength and the chemical potential is greater than the SOC strength, the zero energy Majorana states exist. Finally, we show that the topological superconducting phase is preserved under uniaxial strain.
Keywords:  MoS2      topological superconductivity      Chern number      band inversion  
Received:  10 October 2019      Revised:  12 December 2019      Accepted manuscript online: 
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.25.Dw (Superconductivity phase diagrams)  
  74.70.Xa (Pnictides and chalcogenides)  
Corresponding Authors:  H Simchi     E-mail:  simchi@alumni.iust.ac.ir

Cite this article: 

H Simchi A simple tight-binding approach to topological superconductivity in monolayer MoS2 2020 Chin. Phys. B 29 027401

[1] Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317
[2] Roldan R, Cappelluti E and Guinea F 2013 Phys. Rev. B 88 054515
[3] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
[4] Taniguchi K, Matsumoto A, Shimotani H and Takagi H 2012 Appl. Phys. Lett. 101 042603
[5] Ochoa H and Roldan R 2013 Phys. Rev. B 87 245421
[6] Klinovaja J and Loss D 2013 Phys. Rev. B 88 075404
[7] Kormanyos A, Zolyomi V, Drummond N D and Burkard G 2014 Phys. Rev. X 4 011034
[8] Yuan N Q, Mak K F and and Law K T 2014 Phys. Rev. Lett. 113 097001
[9] Lu J M, Zeliuk O, Leemakers I, Yuan N D Q, Zeitler U, Law K T and Ye J T 2015 Scienc 350 1353
[10] Khezerlou M and Goudarzi H 2016 Phys. Rev. B 93 115406
[11] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[12] Zeng S, Zhao Y, Li G and Ni J 2016 Phys. Rev. B 94 024501
[13] Jiang J W, Qi Z, Park H S and Rabczuk T 2013 Nanotechnology 24 435705
[14] Woo S, Park H C and Son Y W 2016 Phys. Rev. B 93 075420
[15] Pearce A J, Mariani E and and Burkard G 2016 Phys. Rev. B 94 155416
[16] Zhang J J, Gao B and and Dong S 2016 Phys. Rev. B 93 155430
[17] Szczesniak R, Durajski A P and Jarosik M W 2018 Front. Phys. 13 137401
[18] Kang M, Jung S W, Shin W J, Sohn Y, Ryn S H, Kim T K, Hoesch M and Kim S 2018 Nat. Mater. 17 676
[19] He W Y, B Zhou T, He J J, Yuan N F Q, Zhang T and Law K T 1999 Nat. Phys. 1 40
[20] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[21] Cappelluti E, Roldan R, Silva-Guillen J A, Ordejon P and Guinea F 2013 Phys. Rev. 88 075409
[22] Benalcazar W A, Teo J C Y and Hughes T L 2014 Phys. Rev. B 89 224503
[23] Zahid F, Liu L, Zhu Y, Wang J and Guo H 2013 AIP Advan. 3 052111
[24] Liu G B, Shan W Y, Yao Y, Yao W and Xiao D 2013 Phys. Rev. B 88 085433
[25] Rostami H, Moghaddam A G and Asgari R 2013 Phys. Rev. B 88 085440
[26] Ridolfi E, Le D, Rahman T S, Mucciolo E R and Lewenkopf C H 2015 J. Phys. Condens. Matter 27 365501
[27] Rostami H, Asgari R and Guinea F 2016 J. Phys. Condens. Matter 28 495001
[28] Huang S M, Tsai W F, Chung C H and and. Mou C Y 2016 Phys. Rev. B 93 054518
[29] Rostami H, Roldan R, Cappelluti E, Asgari R and Guinea F 2015 Phys. Rev. B 92 195402
[30] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
[31] Farokhnezhad M, Esmaeilzadeh M and Shakouri Kh 2017 Phys. Rev. B 96 205416
[32] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[33] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[34] Cao Y, Fatemi V, Feng S, Watanabe K, Taniguchi T, Kaxiras E and Herrero P J 2018 Nature 556 43
[35] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089
[36] Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[3] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[4] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[5] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[6] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[7] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[10] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[11] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[12] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[13] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[14] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[15] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
No Suggested Reading articles found!