Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 027901    DOI: 10.1088/1674-1056/ab671d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate

Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新)
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Time-dependent damage to fused silica induced by high frequency ultraviolet laser is investigated. Photothermal spectroscopy (PTS) and optical microscopy (OM) are utilized to characterize the evolution of damage pits with irradiation time. Experimental results describe that in the pre-damage stage of fused silica sample irradiated by 355-nm laser, the photothermal spectrum signal undergoes a process from scratch to metamorphism due to the absorption of laser energy by defects. During the visible damage stage of fused silica sample, the photothermal spectrum signal decreases gradually from the maximum value because of the aggravation of the damage and the splashing of the material. This method can be used to estimate the operation lifetime of optical elements in engineering.
Keywords:  photothermal spectroscopy      fused silica      laser-induced damage  
Received:  29 September 2019      Revised:  05 December 2019      Accepted manuscript online: 
PACS:  79.10.Ca (Deep-level photothermal spectroscopy)  
  42.70.Ce (Glasses, quartz)  
  79.20.Ds (Laser-beam impact phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51402173) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-15-099A1).
Corresponding Authors:  Xin Ju     E-mail:  jux@ustb.edu.cn

Cite this article: 

Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新) Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate 2020 Chin. Phys. B 29 027901

[1] Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M, Riley M O, Feit M D and Hackel R P 2004 Proc. SPIE 5341 84
[2] Andre M L 1999 Fusion Eng. 44 43
[3] Peng H S, Zhang X M, Wei X F, Zheng W G, Jing F, Sui Z, Zhao Q, Fan D Y, Ling Z Q and Zhou J Q 2001 Proc. SPIE 4424 98
[4] Xiao G Y, Fan D Y, Wang S J, Lin Z Q, Gu Y, Zhu J Q, Zhen Y X, Zhu J, Liu F Q, Chen S H, Chen Q H, Huang G L and Deng X M 1999 Proc. SPIE 3492 890
[5] Manes K R, Spaeth M L, Adams J J, Bowers M W, Bude J D, Carr C W, Conder A D, Cross D A, Demos S G, Di J M G, Dixit S N, Feigenbaum E, Finucane R G, Guss G M, Henesian M A, Honig J, Kalantar D H, Kegelmeyer L M, Liao Z M, MacGowan B J, Matthews M J, McCandless K P, Mehta N C, Miller P E, Negres R A, Norton M A, Nostrand M C, Orth C D, Sacks R A, Shaw M J, Siegel L R, Stolz C J, Suratwala T I, Trenholme J B, Wegner P J, Whitman P K, Widmayer C C and Yang S T 2016 Fusion Sci. Technol. 69 146
[6] Norton M A, Adams J J, Carr C W, Donohue E E, Feit M D, Hackel R P, Hollingsworth W G, Jarboe J A, Matthews M J, Rubenchik A M and Spaeth M L 2007 Proc. SPIE 6720 67200H
[7] Norton M A, Hrubesh L W, Wu Z L, Donohue E E, Feit M D, Kozlowski M R, Milam D, Neeb K P, Molander W A, Rubenchik A M, Sell W D and Wegner P J 2001 Proc. SPIE 4347 468
[8] Exarhos G J, Gruzdev V E, Menapace J A, Ristau D, Soileau M J, Lamaignére L, Chambonneau M, Diaz R, Grua P, Courchinoux R, Natoli J Y and Rullier J L 2016 Proc. SPIE 10014 1001413
[9] Norton M A, Carr A V, Carr C W, Donohue E E, Feit M D, Hollingsworth W G, Liao Z, Negres R A, Rubenchik A M and Wegner P J 2008 Proc. SPIE 7132 71321H
[10] Kozlowski M R, Mouser R P, Maricle S M, Wegner P J and Weil T L 1999 Proc. SPIE 3578 436
[11] Kashiwagi R and Aramomi S 2016 Proc. SPIE 10014 100141J
[12] Nürnberg F, Kühn B and Rollmann K 2016 Proc. SPIE 10014 100140F
[13] Yu Z, Qi H J, Zhang W L, Wang H, Wang B, Wang Y L and Huang H P 2017 Chin. Phys. B 26 104210
[14] Yan C Y, Liu B A, Li X C, Liu C, Li Y and Ju X 2018 Opt. Mater. Express 8 2863
[15] Liu H J, Huang J, Wang F R, Zhou X D, Xin Y, Zhou X Y, Laixi S, Sun L, Jiang X D, Sui Z and Zheng W G 2013 Opt. Express 21 12204
[16] Suratwala T, Wong L, Miller P, Feit M D, Menapace J, Steele R, Davis P and Walmer D 2006 J. Non-Crys. Solids 352 5601
[17] Uchino T, Takahashi M and Yoko T 2001 Phys. Rev. Lett. 86 5522
[18] He X, Wang G, Zhao H and Ma P 2016 Chin. Phys. B 25 048104
[19] Lu P F, Wu L Y, Yang Y, Wang W Z, Zhang C F, Yang C H, Su R and Chen J 2016 Chin. Phys. B 25 086801
[20] Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D and Monticelli M 2014 Opt. Express 22 5839
[21] Génin Y, Salleo A, Pistor T V and Chase L L 2001 J. Opt. Soc. Am. A 18 2607
[22] Wu Z L, Reichling M, Hu X Q, Balasubramanian K and Guenther K H 1993 Appl. Opt. 32 5660
[23] Wu Z L, Thomsen M, Kuo P K, Lu Y S, Stolz C and Kozlowski 1997 Opt. Eng. 36 251
[24] Yan C Y, Liu B A, Li X C, Liu C and Ju X 2019 Opt. Mater. Express 9 3439
[25] During A, Fossati C and Commandré M 2004 Opt. Commun. 230 279
[1] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[2] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[3] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[4] Laser-induced damage threshold in HfO2/SiO2 multilayer films irradiated by β-ray
Mei-Hua Fang(方美华), Peng-Yu Tian(田鹏宇), Mao-Dong Zhu(朱茂东), Hong-Ji Qi(齐红基), Tao Fei(费涛), Jin-Peng Lv(吕金鹏), Hui-Ping Liu(刘会平). Chin. Phys. B, 2019, 28(2): 024215.
[5] Experimental demonstration of narrow-band rugate minus filters using rapidly alternating deposition technology
Ying Zhang(章瑛), Yan-Zhi Wang(王胭脂), Jiao-Ling Zhao(赵娇玲), Jian-Da Shao(邵建达), Shuang-Chen Ruan(阮双琛). Chin. Phys. B, 2018, 27(5): 054217.
[6] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
[7] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[8] Damage threshold influenced by polishing imperfection distribution under 355-nm laser irradiation
Zhen Yu(余振), Hong-Ji Qi(齐红基), Wei-Li Zhang(张伟丽), Hu Wang(王虎), Bin Wang(王斌), Yue-Liang Wang(王岳亮), Hao-Peng Huang(黄昊鹏). Chin. Phys. B, 2017, 26(10): 104210.
[9] Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics
Xiang He(何祥), Heng Zhao(赵恒), Gang Wang(王刚), Peifan Zhou(周佩璠), Ping Ma(马平). Chin. Phys. B, 2016, 25(8): 088105.
[10] Stable structure and optical properties of fused silica with NBOHC-E' defect
Peng-Fei Lu(芦鹏飞), Li-Yuan Wu(伍力源), Yang Yang(杨阳), Wei-Zheng Wang(王唯正), Chun-Fang Zhang(张春芳), Chuang-Hua Yang(杨创华), Rui Su(苏锐), Jun Chen(陈军). Chin. Phys. B, 2016, 25(8): 086801.
[11] Subsurface defect characterization and laser-induced damage performance of fused silica optics polished with colloidal silica and ceria
Xiang He(何祥), Gang Wang(王刚), Heng Zhao(赵恒), Ping Ma(马平). Chin. Phys. B, 2016, 25(4): 048104.
[12] Influence of secondary treatment with CO2 laser irradiation for mitigation site on fused silica surface
Yong Jiang(蒋勇), Qiang Zhou(周强), Rong Qiu(邱荣), Xiang Gao(高翔), Hui-Li Wang(王慧丽), Cai-Zhen Yao(姚彩珍), Jun-Bo Wang(王俊波), Xin Zhao(赵鑫), Chun-Ming Liu(刘春明), Xia Xiang(向霞), Xiao-Tao Zu(祖小涛), Xiao-Dong Yuan(袁晓东), Xin-Xiang Miao(苗心向). Chin. Phys. B, 2016, 25(10): 108104.
[13] Numerical simulation of modulation to incident laser by submicron to micron surface contaminants on fused silica
Liang Yang(杨亮), Xia Xiang(向霞), Xin-Xiang Miao(苗心向), Li Li(李莉), Xiao-Dong Yuan(袁晓东), Zhong-Hua Yan(晏中华), Guo-Rui Zhou(周国瑞), Hai-Bing Lv(吕海兵), Wan-Guo Zheng(郑万国), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2016, 25(1): 014210.
[14] ATR-FTIR spectroscopic studies on density changes of fused silica induced by localized CO2 laser treatment
Zhang Chuan-Chao (张传超), Zhang Li-Juan (张丽娟), Liao Wei (廖威), Yan Zhong-Hua (晏中华), Chen Jing (陈静), Jiang Yi-Lan (蒋一岚), Wang Hai-Jun (王海军), Luan Xiao-Yu (栾晓雨), Ye Ya-Yun (叶亚云), Zheng Wan-Guo (郑万国), Yuan Xiao-Dong (袁晓东). Chin. Phys. B, 2015, 24(2): 024220.
[15] Analysis of the spatial filter of a dielectric multilayer film reflective cutoff filter-combination device
Zhang Ying (章瑛), Qi Hong-Ji (齐红基), Yi Kui (易葵), Wang Yan-Zhi (王胭脂), Sui Zhan (隋展), Shao Jian-Da (邵建达). Chin. Phys. B, 2015, 24(10): 104216.
No Suggested Reading articles found!