CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate |
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新) |
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract Time-dependent damage to fused silica induced by high frequency ultraviolet laser is investigated. Photothermal spectroscopy (PTS) and optical microscopy (OM) are utilized to characterize the evolution of damage pits with irradiation time. Experimental results describe that in the pre-damage stage of fused silica sample irradiated by 355-nm laser, the photothermal spectrum signal undergoes a process from scratch to metamorphism due to the absorption of laser energy by defects. During the visible damage stage of fused silica sample, the photothermal spectrum signal decreases gradually from the maximum value because of the aggravation of the damage and the splashing of the material. This method can be used to estimate the operation lifetime of optical elements in engineering.
|
Received: 29 September 2019
Revised: 05 December 2019
Accepted manuscript online:
|
PACS:
|
79.10.Ca
|
(Deep-level photothermal spectroscopy)
|
|
42.70.Ce
|
(Glasses, quartz)
|
|
79.20.Ds
|
(Laser-beam impact phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51402173) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-15-099A1). |
Corresponding Authors:
Xin Ju
E-mail: jux@ustb.edu.cn
|
Cite this article:
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新) Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate 2020 Chin. Phys. B 29 027901
|
[1] |
Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M, Riley M O, Feit M D and Hackel R P 2004 Proc. SPIE 5341 84
|
[2] |
Andre M L 1999 Fusion Eng. 44 43
|
[3] |
Peng H S, Zhang X M, Wei X F, Zheng W G, Jing F, Sui Z, Zhao Q, Fan D Y, Ling Z Q and Zhou J Q 2001 Proc. SPIE 4424 98
|
[4] |
Xiao G Y, Fan D Y, Wang S J, Lin Z Q, Gu Y, Zhu J Q, Zhen Y X, Zhu J, Liu F Q, Chen S H, Chen Q H, Huang G L and Deng X M 1999 Proc. SPIE 3492 890
|
[5] |
Manes K R, Spaeth M L, Adams J J, Bowers M W, Bude J D, Carr C W, Conder A D, Cross D A, Demos S G, Di J M G, Dixit S N, Feigenbaum E, Finucane R G, Guss G M, Henesian M A, Honig J, Kalantar D H, Kegelmeyer L M, Liao Z M, MacGowan B J, Matthews M J, McCandless K P, Mehta N C, Miller P E, Negres R A, Norton M A, Nostrand M C, Orth C D, Sacks R A, Shaw M J, Siegel L R, Stolz C J, Suratwala T I, Trenholme J B, Wegner P J, Whitman P K, Widmayer C C and Yang S T 2016 Fusion Sci. Technol. 69 146
|
[6] |
Norton M A, Adams J J, Carr C W, Donohue E E, Feit M D, Hackel R P, Hollingsworth W G, Jarboe J A, Matthews M J, Rubenchik A M and Spaeth M L 2007 Proc. SPIE 6720 67200H
|
[7] |
Norton M A, Hrubesh L W, Wu Z L, Donohue E E, Feit M D, Kozlowski M R, Milam D, Neeb K P, Molander W A, Rubenchik A M, Sell W D and Wegner P J 2001 Proc. SPIE 4347 468
|
[8] |
Exarhos G J, Gruzdev V E, Menapace J A, Ristau D, Soileau M J, Lamaignére L, Chambonneau M, Diaz R, Grua P, Courchinoux R, Natoli J Y and Rullier J L 2016 Proc. SPIE 10014 1001413
|
[9] |
Norton M A, Carr A V, Carr C W, Donohue E E, Feit M D, Hollingsworth W G, Liao Z, Negres R A, Rubenchik A M and Wegner P J 2008 Proc. SPIE 7132 71321H
|
[10] |
Kozlowski M R, Mouser R P, Maricle S M, Wegner P J and Weil T L 1999 Proc. SPIE 3578 436
|
[11] |
Kashiwagi R and Aramomi S 2016 Proc. SPIE 10014 100141J
|
[12] |
Nürnberg F, Kühn B and Rollmann K 2016 Proc. SPIE 10014 100140F
|
[13] |
Yu Z, Qi H J, Zhang W L, Wang H, Wang B, Wang Y L and Huang H P 2017 Chin. Phys. B 26 104210
|
[14] |
Yan C Y, Liu B A, Li X C, Liu C, Li Y and Ju X 2018 Opt. Mater. Express 8 2863
|
[15] |
Liu H J, Huang J, Wang F R, Zhou X D, Xin Y, Zhou X Y, Laixi S, Sun L, Jiang X D, Sui Z and Zheng W G 2013 Opt. Express 21 12204
|
[16] |
Suratwala T, Wong L, Miller P, Feit M D, Menapace J, Steele R, Davis P and Walmer D 2006 J. Non-Crys. Solids 352 5601
|
[17] |
Uchino T, Takahashi M and Yoko T 2001 Phys. Rev. Lett. 86 5522
|
[18] |
He X, Wang G, Zhao H and Ma P 2016 Chin. Phys. B 25 048104
|
[19] |
Lu P F, Wu L Y, Yang Y, Wang W Z, Zhang C F, Yang C H, Su R and Chen J 2016 Chin. Phys. B 25 086801
|
[20] |
Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D and Monticelli M 2014 Opt. Express 22 5839
|
[21] |
Génin Y, Salleo A, Pistor T V and Chase L L 2001 J. Opt. Soc. Am. A 18 2607
|
[22] |
Wu Z L, Reichling M, Hu X Q, Balasubramanian K and Guenther K H 1993 Appl. Opt. 32 5660
|
[23] |
Wu Z L, Thomsen M, Kuo P K, Lu Y S, Stolz C and Kozlowski 1997 Opt. Eng. 36 251
|
[24] |
Yan C Y, Liu B A, Li X C, Liu C and Ju X 2019 Opt. Mater. Express 9 3439
|
[25] |
During A, Fossati C and Commandré M 2004 Opt. Commun. 230 279
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|