Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 018702    DOI: 10.1088/1674-1056/ab5fbe
RAPID COMMUNICATION Prev   Next  

Quantum intelligence on protein folding pathways

Wen-Wen Mao(毛雯雯)1, Li-Hua Lv(吕丽花)1, Yong-Yun Ji(季永运)2, You-Quan Li(李有泉)1,3
1 Zhejiang Province Key Laboratory of Quantum Technology&Device and Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Department of Physics, Wenzhou University, Wenzhou 325035, China;
3 Collaberative Innovation Center of Advance Microstructure, Nanjing University, Nanjing 210008, China
Abstract  We study the protein folding problem on the base of our quantum approach by considering the model of protein chain with nine amino-acid residues. We introduce the concept of distance space and its projections on a XY-plane, and two characteristic quantities, one is called compactness of protein structure and another is called probability ratio involving shortest path. The concept of shortest path enables us to reduce the 388×388 density matrix to a 2×2 one from which the von Neumann entropy reflecting certain quantum coherence feature is naturally defined. We observe the time evolution of average distance and compactness solved from the classical random walk and quantum walk, we also compare the features of the time-dependence of Shannon entropy and von Neumann entropy. All the results not only reveal the fast quantum folding time but also unveil the existence of quantum intelligence hidden behind in choosing protein folding pathways.
Keywords:  protein folding      quantum walk      shortest pathways      mean first passage time  
Received:  04 December 2019      Accepted manuscript online: 
PACS:  87.15.hm (Folding dynamics)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  05.40.Fb (Random walks and Levy flights)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304304) and the National Natural Science Foundation of China (Grant No. 11935012).
Corresponding Authors:  You-Quan Li     E-mail:  yqli@zju.edu.cn

Cite this article: 

Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉) Quantum intelligence on protein folding pathways 2020 Chin. Phys. B 29 018702

[1] Műnoz V and Eaton W A 1999 Proc. Natl. Acad. Sci. USA 96 11311
[2] Henry E R and Eaton W A 2004 Chem. Phys. 307 163
[3] Englander S W and Mayne L 2017 Proc. Natl. Acad. Sci. USA 114 8253
[4] Karplus M and Weaver D L 1976 Nature 260 404
[5] Sali A, Shakhnovich E and Karplus M 1994 Nature 369 248
[6] Guo Z Y and Thirumalai D 1995 Biopolymers 36 83
[7] Fersht A R 2000 Proc. Natl. Acad. Sci. 97 1525
[8] Oliveberg M and Wolynes P G 2005 Q. Rev. Biophys. 38 245
[9] Shakhnovich E 2006 Chem. Rev. 106 1559
[10] Wolynes P G, Eaton W A and Fersht A R 2012 Proc. Natl. Acad. Sci. USA 109 17770
[11] Dill K A and MacCallum J L 2012 Science 338 1042
[12] Thirumalai D, Liu Z X, O'Brien E P and Reddy G 2013 Curr. Opin. Struct. Biol. 23 22
[13] Piana S, Lindorff-Larsen K and Shaw D E 2012 Proc. Natl. Acad. Sci. USA 109 17845
[14] Henry E R, Best R B and Eaton W A 2013 Proc. Natl. Acad. Sci. USA 110 17880
[15] Snow C D, Nguyen H, Pande V and Gruebele M 2002 Nature 420 102
[16] Mirny L and Shakhnovich E 2001 Annual Review of Biophysics and Biomolecular Structure 30 361
[17] Lu L H and Li Y Q 2019 Chin. Phys. Lett. 36 080305
[18] Taketomi H, Ueda Y and Go N 1975 Int. J. Prept. Protein Res. 7 445
[19] Dill K A 1985 Biochemistry 24 1501
[20] Li H, Helling R, Tang C and Wingreen N S 1996 Science 273 666
[21] Li Y Q, Ji Y Y, Mao J W and Tang X W 2004 Phys. Rev. E 72 021904
[22] van Kampen N G 1997 Stochastic Processes in Physics and Chemistry (revised edition) (Amsterdam: North-Holland)
[23] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[24] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
[25] Manouchehri K and Wang J B 2014 Physical Implementation of Quantum Walks (Berlin: Springer-Verlag)
[26] Anfinsen C B 1973 Science 181 223
[27] Montroll E W 1969 J. Math. Phys. 10 753
[28] Redner S 2001 A guide to first-passage processes (Cambridge: Cambridge University Press)
[29] Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701
[30] Condamin S, Benichou O, Tejedor V, Voituriez R and Klafter J 2007 Nature 450 77
[31] Guerin T, Levernier N, Benichou O and Voituriez R 2016 Nature 534 356
[32] Nielsen M A and Chuang I L 2000 Quantum computation and quantum information (Cambridge: Cambridge University Press)
[33] Pathria R K and Beale D P Statistical Mechanics, 3rd edn. (New York: Butterworth-Heinemann Elsevier)
[34] Leggett A J 2001 Rev. Mod. Phys. 73 307
[35] Lu L H and Li Y Q 2009 Phys. Rev. A 80 033619
[1] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[2] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[3] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[4] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[5] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
[6] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[7] Folding nucleus and unfolding dynamics of protein 2GB1
Xuefeng Wei(韦学锋) and Yanting Wang(王延颋). Chin. Phys. B, 2021, 30(2): 028703.
[8] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
[9] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[10] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[11] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[12] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[13] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[14] Application of topological soliton in modeling protein folding: Recent progress and perspective
Xu-Biao Peng(彭绪彪)†, Jiao-Jiao Liu(刘娇娇), Jin Dai(戴劲), Antti J Niemi‡, and Jian-Feng He(何建锋)§. Chin. Phys. B, 2020, 29(10): 108705.
[15] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
No Suggested Reading articles found!