Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014301    DOI: 10.1088/1674-1056/ab5780
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging

Wali Faiz1, Ji Li(李冀)1, Kun Gao(高昆)2, Zhao Wu(吴朝)2, Yao-Hu Lei(雷耀虎)1, Jian-Heng Huang(黄建衡)1, Pei-Ping Zhu(朱佩平)3,4
1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Grating-based x-ray phase contrast imaging has attracted increasing interest in recent decades as multimodal and laboratory source usable method. Specific efforts have been focused on establishing a new extraction method to perform practical applications. In this work, noise properties of multi-combination information of newly established information extraction method, so-called angular signal radiography method, are investigated to provide guidelines for targeted and specific applications. The results show that how multi-combination of images can be used in targeted practical applications to obtain a high-quality image in terms of signal-to-noise ratio. Our conclusions can also hold true for upcoming targeted practical applications such as biomedical imaging, non-destructive imaging, and materials science.
Keywords:  grating-based phase-contrast imaging      signal-to-noise ratio      refraction      scattering  
Received:  17 September 2019      Revised:  18 October 2019      Accepted manuscript online: 
PACS:  42.30.Rx (Phase retrieval)  
  43.60.Cg (Statistical properties of signals and noise)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11535015), the National Special Foundation of China for Major Science Instrument (Grant No. 61227802), the National Natural Science Foundation of China (Grant Nos. 61405120, 61605119, 61571305, and 11674232), the Natural Science Foundation of Shenzhen, China (Grant No. JCYJ20170302142617703), and the Natural Science Foundation of Shenzhen University, China (Grant Nos. 2017017 and 2018041). The author (Faiz Wali) was sponsored by the Post-doctoral International Exchange Program of China.
Corresponding Authors:  Yao-Hu Lei, Jian-Heng Huang     E-mail:  leiyaohu@szu.edu.cn;xianhuangjianheng@163.com

Cite this article: 

Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平) Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging 2020 Chin. Phys. B 29 014301

[1] Als-Nielsen J and McMorrow D 2011 Elements Of Modern X-ray Physics (New York: John Wiley & Sons)
[2] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Bronnimann C, Grunzweig C and David C 2008 Nat. Mater. 7 134
[3] Wen H, Bennett E E, Hegedus M M and Rapacchi S 2009 Radiology 251 910
[4] Yashiro W, Terui Y, Kawabata K and Momose A 2010 Opt. Express 18 16890
[5] Bech M, Bunk O, Donath T, Feidenhans'l R, David C and Pfeiffer F 2010 Phys. Med. Biol. 55 5529
[6] Yashiro W, Harasse S, Kawabata K, Kuwabara H, Yamazaki T and Momose A 2011 Phys. Rev. B 84 094106
[7] Chen G H, Bevins N, Zambelli J and Qi Z 2010 Opt. Express 18 12960
[8] Lynch S K, Pai V, Auxier J, Stein A F, Bennett E E, Kemble C K, Xiao X, Lee W K, Morgan N Y and Wen H H 2011 Appl. Opt. 50 4310
[9] Modregger P, Scattarella F, Pinzer B, David C, Bellotti R and Stampanoni M 2012 Phys. Rev. Lett. 108 048101
[10] Malecki A, Potdevin G and Pfeiffer F 2012 Europhys. Lett. 99 48001
[11] Potdevin G, Malecki A, Biernath T, Bech M, Jensen T H, Feidenhans R, Zanette I, Weitkamp T, Kenntner J and Mohr J 2012 Phys. Med. Biol. 57 3451
[12] Bao Y, Shao Q, Hu R, Wang S, Gao K, Wang Y, Tian Y and Zhu P 1965 Appl. Phys. Lett. 6 155
[13] Bonse U and Hart M 1965 Appl. Phys. Lett. 6 155
[14] Momose A, Takeda T, Itai Y and Hirano K 1996 Nat. Med. 2 473
[15] Nugent K, Gureyev T, Cookson D, Paganin D and Barnea Z 1996 Phys. Rev. Lett. 77 2961
[16] Wilkins S, Gureyev T, Gao D, Pogany A and Stevenson A 1996 Nature 384 335
[17] Davis T, Gao D, Gureyev T, Stevenson A and Wilkins S 1995 Nature 373 595
[18] Chapman D, Thomlinson W, Johnston R, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F and Sayers D 1997 Phys. Med. Biol. 42 2015
[19] Zhu P P, Wang J Y, Yuan Q X, Huang W X, Shu H, Gao B, Hu T D and Wu Z Y 2005 Appl. Phys. Lett. 87 264101
[20] Zhu P, Yuan Q, Huang W, Wang J, Shu H, Chen B, Liu Y, Li E and Wu Z 2006 J. Phys. D: Appl. Phys. 39 4142
[21] Pfeiffer F, Weitkamp T, Bunk O and David C 2006 Nat. Phys. 2 258
[22] Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P and Ziegler E 2005 Opt. Express 13 6296
[23] Zhu P, Zhang K, Wang Z, Liu Y, Liu X, Wu Z, McDonald S A, Marone F and Stampanoni M 2010 Proc. Natl. Acad. Sci. USA 107 13576
[24] Li P, Zhang K, Bao Y, Ren Y, Ju Z, Wang Y, He Q, Zhu Z, Huang W, Yuan Q and Zhu P 2016 Opt. Express 24 5829
[25] Revol V, Kottler C, Kaufmann R, Straumann U and Urban C 2010 Rev. Sci. Instrum. 81 073709
[26] Chen G H, Zambelli J, Li K, Bevins N and Qi Z 2011 Med. Phys. 38 584
[27] Weber T, Bartl P, Durst J, Haas W, Michel T, Ritter A and Anton G 2011 Nucl. Instrum. Method A 648 S273
[28] Wu Z, Wang Z L, Gao K, Wang D J, Wang S H, Chen J, Chen H, Zhang K, Zhu P P and Wu Z Y 2014 J. Electron. Spectrosc. 196 75
[29] Faiz W, Bao Y, Gao K, Wu Z, Wei C X, Zan G B, Zhu P P and Tian Y C 2017 Chin. Phys. B 26 040602
[30] Momose A, Yashiro W, Takeda Y, Suzuki Y and Hattori T 2006 Jpn. J. Appl. Phys. 45 5254
[31] Diemoz P, Coan P, Zanette I, Bravin A, Lang S, Glaser C and Weitkamp T 2011 Opt. Express 19 1691
[32] Bronshtein I N and Semendyayev K A 2013 Handbook of mathematics (Berlin: Springer Science & Business Media)
[1] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[4] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[5] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[6] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[7] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[10] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[11] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[12] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[13] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[14] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[15] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
No Suggested Reading articles found!