Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014302    DOI: 10.1088/1674-1056/ab5931
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation

Wei-Guang Zhu(祝伟光)1, Yi-Feng Li(李义丰)1,2, Li-Qiang Guan(关立强)1, Xi-Li Wan(万夕里)1, Hui-Yang Yu(余辉洋)1, Xiao-Zhou Liu(刘晓宙)3
1 College of Computer Science and Technology, Nanjing Tech University, Nanjing 211800, China;
2 Key Laboratory of Modern Acoustics, Ministry of Education, Nanjing University, Nanjing 210093, China;
3 Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics and School of Physics, Nanjing University, Nanjing 210093, China
Abstract  We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures. Simulation models of three-dimensional (3D) aluminum plates and composite laminates are established by ABAQUS software, where the aluminum plate contains buried crack and composite laminates comprises cohesive element whose thickness is zero to simulate delamination damage. The interactions between the S0 mode Lamb wave and the buried micro-cracks of various dimensions are simulated by using the finite element method. Fourier frequency spectrum analysis is applied to the received time domain signal and fundamental frequency amplitudes, and sum and difference frequencies are extracted and simulated. Simulation results indicate that nonlinear Lamb waves have different sensitivities to various crack sizes. There is a positive correlation among crack length, height, and sum and difference frequency amplitudes for an aluminum plate, with both amplitudes decreasing as crack thickness increased, i.e., nonlinear effect weakens as the micro-crack becomes thicker. The amplitudes of sum and difference frequency are positively correlated with the length and width of the zero-thickness cohesive element in the composite laminates. Furthermore, amplitude ratio change is investigated and it can be used as an effective tool to detect inner defects in thin 3D plates.
Keywords:  nonlinear Lamb wave      mixed-frequency      micro-cracks      amplitude ratio  
Received:  20 October 2019      Revised:  17 November 2019      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571222, 61602235, and 11474160) and the Six Talent Peaks Project of Jiangsu Province, China.
Corresponding Authors:  Yi-Feng Li     E-mail:  lyffz4637@163.com

Cite this article: 

Wei-Guang Zhu(祝伟光), Yi-Feng Li(李义丰), Li-Qiang Guan(关立强), Xi-Li Wan(万夕里), Hui-Yang Yu(余辉洋), Xiao-Zhou Liu(刘晓宙) Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation 2020 Chin. Phys. B 29 014302

[1] Yang R Z, He Y Z and Zhang H 2016 Renew. Sust. Energ. Rev. 60 1225
[2] Mańka M, Rosiek M, Martowicz A, Stepinski T and Uhl T 2016 Mech. Syst. Sig. Process. 78 71
[3] Shan S B, Cheng L and Li P 2017 Smart Mater. Struct. 26 025019
[4] Cawley P and Alleyne D 1996 Ultrasonics 34 287
[5] Gao H and Rose J L 2010 Aeronaut. J. 114 49
[6] Jhang K Y 2009 Int. J. Precis. Eng. Man. 10 123
[7] Broda D, Staszewski W J, Martowicz A, Uhl T and Silberschmidt V V 2014 J. Sound Vib. 333 1097
[8] Chen J, Xu Z, Yu Y and Yao Y P 2014 NDT E Int. 67 10
[9] Delrue S and Koen V D A 2015 Ultrasonics 63 147
[10] Novak A, Bentahar M, Tournat V, Guerjouma R E and Simon L 2012 NDT E Int. 45 1
[11] Wan X, Tse P W, Chen J M, Xu G H and Zhang Q 2018 Ultrasonics 82 57
[12] Jiao J P, Sun J, Li N, Song G R, Wu B and He C F 2014 NDT E Int. 62 122
[13] Zhou J Y, Xiao L, Qu W Z and Lu Y 2017 NDT E Int. 92 22
[14] Antonaci P, Bruno C L E, Bocca P G, Scalerandi M and Gliozzi A S 2010 Cem. Concr. Res. 40 340
[15] Kudela P, Radzienski M, Ostachowicz W and Yang Z B 2018 Mech. Syst. Signal Process. 108 21
[16] Wan X, Tse P W, Xu G H, Tao T F and Zhang Q 2016 Smart Mater. Struct. 25 045023
[17] Wang Y, Guan R and Lu Y 2017 Ultrasonics 80 87
[18] Zhao Y X, Li F L, Cao P, Liu Y L, Zhang J Y and Fu S Y 2017 Ultrasonics 79 60
[19] Sotoudeh V, Black R J, Moslehi B and Qiao P Z 2014 Proc. SPIE 9062 2978
[20] Yang Y, Ng C T and Kotousov A 2018 Smart Mater. Struct. 27 055013
[21] Li W B, Cho Y and Achenbach J D 2012 Smart Mater. Struct. 21 085019
[22] Jiao J P, Meng X J, He C F and Wu B 2017 NDT E Int. 85 63
[23] Li F L, Zhao Y X, Cao P and Hu N 2018 Ultrasonics 87 33
[24] Sun M X, Xiang Y X, Deng M X, Xu J C and Xuan F Z 2018 NDT E Int. 93 1
[25] Lee D J, Cho Y and Li W B 2014 AIP Conf. Proc. 1581 662
[26] Pai P F, Deng H G and Sundaresan M J 2015 Mech. Syst. Sig. Process. 62-63 183
[27] Shen Y F and Giurgiutiu V 2015 Wave Motion 58 22
[28] Rauter N, Lammering R and Kühnrich T 2016 Compos. Struct. 152 247
[29] Ben B S, Ben B A, Vikram K A and Yang S H 2013 Measurement 46 904
[30] Ochôa P, Infante V, Silva J M and Groves R M 2015 Compos. Part. B-Eng. 80 291
[31] Wan X, Zhang Q, Xu G H and Tse P W 2014 Sensors 14 8528
[32] Yelve N P, Mitra M and Mujumdar P M 2013 Struct. Control. Hlth. 21 833
[33] Jiao J P, Sun J J, Li G H, Wu B and He C F 2015 NDT E Int. 69 1
[34] Shen Y F and Giurgiutiu V 2014 J. Intel. Mat. Syst. Str. 25 506
[35] He C F, Liu H Y, Liu Z H and Wu B 2013 J. Sound Vib. 332 7243
[36] Sherafat M H, Quaegebeur N, Hubert P, Lessard L and Masson P 2016 J. Reinf. Plast. Comp. 35 796
[37] Sarrado C, Leone F S and Turno A 2016 Eng. Fract. Mech. 168 105
[38] Jiang H X and Meng D G 2018 Eng. Fract. Mech. 199 280
[39] Carreras L, Bak B L V, Turon A, Renart J and Lindgaard E 2018 Eur. J. Mech. A-Solid 72 464
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[3] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[4] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[5] An improved lumped parameter model predicting attenuation of earmuff with air leakage
Xu Zhong(仲旭), Zhe Chen(陈哲), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(11): 114301.
[6] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[7] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[8] Synthetical optimization of the structure dimension for the thermoacoustic regenerator
Huifang Kang(康慧芳), Lingxiao Zhang(张凌霄), Jun Shen(沈俊),Xiachen Ding(丁夏琛), Zhenxing Li(李振兴), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(3): 034301.
[9] Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator
Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳). Chin. Phys. B, 2022, 31(2): 024303.
[10] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[11] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[12] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[13] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[14] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[15] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
No Suggested Reading articles found!