Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 128702    DOI: 10.1088/1674-1056/ab50fd
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation

Xin-Xin Zhang(张欣欣)1,2, Ming-Xia He(何明霞)1,2, Yu Chen(陈宇)3, Cheng Li(李程)3, Jin-Wu Zhao(赵晋武)1,2, Peng-Fei Wang(王鹏騛)1,2, Xin Peng(彭鑫)4
1 The Center for Terahertz Waves, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China;
2 State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China;
3 Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China;
4 School of Life Sciences, Tianjin University, Tianjin 300072, China
Abstract  Alkaline phosphatase (ALP) plays an integral role in the metabolism of liver and development of the skeleton in humans. To date, the interactions between different-duration terahertz (THz) radiation and ALP activities, as well as the influence mechanism are still unclear. In this study, using the para-nitro-phenyl-phosphate (pNPP) method, we detect changes in ALP activities during 40-minute THz radiation (0.1 THz, 13 mW/cm2). It is found that the activity of ALP decreases in the first 25 min, and subsequently increases in the later 15 min. Compared with the activity of ALP being heated, the results suggest that short-term terahertz radiation induces a decrease in enzyme activity through the non-thermal mechanism. In order to explore the non-thermal effects of THz radiation on ALP, we focus on the impacts of 0.1 THz radiation for 20 min on the activity of ALP in different concentrations. The results reveal that the activity of ALP decreases significantly after exposure to THz radiation. In addition, it could be deduced from fluorescence, ultraviolet-visible (UV-vis), and THz spectra results that THz radiation has induced changes in ALP structures. Our study unlocks non-thermal interactions between THz radiation and ALP, as well as suggests that THz spectroscopy is a promising technique to distinguish ALP structures.
Keywords:  THz radiation      alkaline phosphatase      non-thermal effects      spectroscopy      conformations  
Received:  13 August 2019      Revised:  11 October 2019      Accepted manuscript online: 
PACS:  87.50.uj (Biophysical mechanisms of interaction)  
  87.14.ej (Enzymes)  
  87.15.hp (Conformational changes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61675151).
Corresponding Authors:  Ming-Xia He     E-mail:  hhmmxx@tju.edu.cn

Cite this article: 

Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫) Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation 2019 Chin. Phys. B 28 128702

[34] Spande T F and Witkop B Methods Enzymology 11 498
[1] Ohnishi M, Suganuma T, Fujimori H and Hiromi K 1973 J. Biochem. 74 1271
[35] Clarke A J and Svensson B 2014 Carlsberg Res. Commun. 49 559
[2] Alam S N, Yammine H, Moaven O, Ahmed R, Moss A K, Biswas B, Muhammad N, Biswas R, Raychowdhury A and Kaliannan K 2014 Ann. Surg. 259 715
[36] Liyanage M R, Bakshi K, Volkin D B, and Middaugh C R 1982 Therapeutic Peptides 1088 225
[3] Lallés J P 2014 Nutr. Rev. 72 82
[37] Liyanage M R, Bakshi K, Volkin D B and Middaugh C R 2014 Ultraviolet Absorption Spectroscopy of Peptides (Totowa: Humana Press) p. 12
[4] Ghosh S S, Gehr T W and Ghosh S 2014 Molecules 19 20139
[38] Hartson S D, Irwin A D, Shao J, Scroggins B T, Volk L, Huang W and Matts R L 2000 Biochemistry 39 7631
[5] Bilski J, Bialy A M, Wojcik D, Bilska J Z, Brzozowski B, Magierowski M, Mach T, Magierowska K and Brzozowski T 2017 Mediators Inflammation 2017 9074601
[39] Aćcimović J M, Stanimirović B D, Todorović N, et al. 2000 Chem. Biolog. Ineract. 188 21
[6] Pirogova E, Cosic I, Fang J and Vojisavljevic V 2008 Estonian J. Eng. 57 107
[40] Aćimović J M, Stanimirović B D, Todorović N, Jovanovića V B and Mandićet L M 2010 Chemico-Biol. Interact. 188 21
[7] Alsuhaim H S, Vojisavljevic V and Pirogova E 2013 Proc. SPIE 8923 892357
[41] Zhao X, Liu R, Chi Z, Teng Y and Qin P 2010 J. Phys. Chem. B 114 5625
[8] Vojisavljevic V, Pirogova E and Cosic I 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (Buenos Aires, Argentina 31 August-4 September 2010) 10 835
[42] Liu R, He M X, Su R X, Yu Y J, Qi W and He Z M 2010 Biochem. Biophys. Res. Commun. 391 862
[9] Suzanne E, Xenopoulos M A and Hendzel L L 2005 Limnology & Oceanography 50 1345
[43] Xu J, Plaxco K W and Allen S J 2006 Protein Sci. 15 1175
[10] Wilmink G J and Grundt J E 2011 J. Ournal Infrared Millimeter & Terahertz Waves 32 1074
[44] Havenith M, Heugen U, Bergner A, et al. 2004 Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics (Karlsruhe, Germany 27 September-1 October 2004)
[11] Frohlich H 1975 Proc. Natl. Acad. Sci. USA 72 4211
[45] Markelz A, Whitmire S, Hillebrecht J, and Birge R 2002 Phys. Med. & Biol. 47 3797
[12] Alexandrov B S, Gelev V, Bishop A R, Usheva A and Rasmussen O K 2010 Phys. Lett. A 374 1214
[46] Andrea M, Scott W, Jay H and Robert B 2002 Phys. Med. & Biol. 47 3797
[13] Chitanvis S M 2006 J. Polym. Sci. Part. B Polym. Phys. 44 2740
[47] Ohki K and Keisuke T 2010 Spectroscopy 24 149
[14] Zhao L 2014 Mil. Med. Res. 1 26
[48] Fu X, Li X, Liu J, Yong D and Zhi H 2012 Proc. SPIE-Int. Soc. For Opt. Eng. 8562 18
[15] Orlando A R and Gallerano G P 2009 J. Infrared Millimeter & Terahertz Waves 30 1308
[49] Penkov N V, Yashin V, Fesenko J E and Manokhin A 2018 Appl. Spectrosc. 72 257
[16] Govorun V M, Tretiakov V E, Tulyakov N N, Fleurov V B, Demin A I, Volkov A Y, Batanov V A and Kapitanov A B 1991 Int. J. Infrared Millimeter Wave 12 1469
[50] Xu Y and Havenith M 2015 J. Chem. Phys. 143 170901
[17] Lakowicz J R 1980 J. Biochem. & Biophys. Methods 2 91
[18] Kondakova A K, Khmel N V, Kolesnikov V G, Kalekina E A, Kamenev Y E, Telichko T V and Korzh V G 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (October 8 2013 Kharkiv, Ukraine 23-28 June 2013) p. 1066
[19] Homenko A, Kapilevich B, Kornstein R and Firer M A 2009 Bioelectromagnetics 30 167
[20] Plusquellic D F, Siegrist K, Heilweil E J and Esenturk O 2007 Chemphyschem 8 2412
[21] Mernea M, Calborean O, Grigore O, Dascalu T and Dan F M 2014 Opt. & Quantum Electron. 46 505
[22] Hu X N and Yang B C 2014 J. Biomed. Mater. Res. Part. A 102 1053
[23] Cherkasova O P, Fedorov V I, Nemova E F and Pogodin A S 2009 Opt. Spectrosc. 107 534
[24] Kapralova A V and Pogodin A S 2011 Proc. SPIE 7994 799418
[25] Cherkasova O P, Fedorov V I, Nemova E F, Popova S S, Pogodin A S and Khamoyan A G 2007 Proc. SPIE 6727 672721
[26] Biazar E and Keshel S H 2013 J. Cell Commun. & Adhesion 20 41
[27] Park S and Burghardt T P 2000 Biochemistry 39 11732
[28] Lesi C, Scandellari A, Ruffilli E, Zoni L, Matacena C, and Malaguti P 1985 Clin. Biochem. 18 317
[29] Bednyakov D A 2010 Ecol. Animals 5 53
[30] Yang X Z and Guo J L 2012 Mod. Preventive Med. 39 3917 (in Chinese)
[31] Valeur B M and Berberansantos N 2013 J. Biomed. Opt. 18 9901 (in Chinese)
[32] Udayakumar K, Yuvaraj M, Awad F, Jayanth V and Ganesan S 2014 J. Fluoresc. 24 613
[33] Portugal C M, Lima J C and Crespo J G 2006 Crespo J. Membr. Sci. 284 180
[34] Spande T F and Witkop B Methods Enzymology 11 498
[35] Clarke A J and Svensson B 2014 Carlsberg Res. Commun. 49 559
[36] Liyanage M R, Bakshi K, Volkin D B, and Middaugh C R 1982 Therapeutic Peptides 1088 225
[37] Liyanage M R, Bakshi K, Volkin D B and Middaugh C R 2014 Ultraviolet Absorption Spectroscopy of Peptides (Totowa: Humana Press) p. 12
[38] Hartson S D, Irwin A D, Shao J, Scroggins B T, Volk L, Huang W and Matts R L 2000 Biochemistry 39 7631
[39] Aćcimović J M, Stanimirović B D, Todorović N, et al. 2000 Chem. Biolog. Ineract. 188 21
[40] Aćimović J M, Stanimirović B D, Todorović N, Jovanovića V B and Mandićet L M 2010 Chemico-Biol. Interact. 188 21
[41] Zhao X, Liu R, Chi Z, Teng Y and Qin P 2010 J. Phys. Chem. B 114 5625
[42] Liu R, He M X, Su R X, Yu Y J, Qi W and He Z M 2010 Biochem. Biophys. Res. Commun. 391 862
[43] Xu J, Plaxco K W and Allen S J 2006 Protein Sci. 15 1175
[44] Havenith M, Heugen U, Bergner A, et al. 2004 Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics (Karlsruhe, Germany 27 September-1 October 2004)
[45] Markelz A, Whitmire S, Hillebrecht J, and Birge R 2002 Phys. Med. & Biol. 47 3797
[46] Andrea M, Scott W, Jay H and Robert B 2002 Phys. Med. & Biol. 47 3797
[47] Ohki K and Keisuke T 2010 Spectroscopy 24 149
[48] Fu X, Li X, Liu J, Yong D and Zhi H 2012 Proc. SPIE-Int. Soc. For Opt. Eng. 8562 18
[49] Penkov N V, Yashin V, Fesenko J E and Manokhin A 2018 Appl. Spectrosc. 72 257
[50] Xu Y and Havenith M 2015 J. Chem. Phys. 143 170901
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[3] LAMOST medium-resolution spectroscopic survey of binarity and exotic star (LAMOST-MRS-B): Observation strategy and target selection
Jiao Li(李蛟), Jiang-Dan Li(李江丹), Yan-Jun Guo(郭彦君), Zhan-Wen Han(韩占文), Xue-Fei Chen(陈雪飞), Chao Liu(刘超), Hong-Wei Ge(葛宏伟), Deng-Kai Jiang(姜登凯), Li-Fang Li(李立芳), Bo Zhang(章博), Jia-Ming Liu(刘佳明), Hao Tian(田浩), Hao-Tong Zhang(张昊彤), Hai-Long Yuan(袁海龙), Wen-Yuan Cui(崔文元),Juan-Juan Ren(任娟娟), Jing-Hao Cai(蔡靖豪), and Jian-Rong Shi(施建荣). Chin. Phys. B, 2023, 32(1): 019501.
[4] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[5] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[6] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[7] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[8] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[15] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
No Suggested Reading articles found!