Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060703    DOI: 10.1088/1674-1056/ac43ad
GENERAL Prev   Next  

Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity

Hua-Wei Jin(靳华伟)1,2,3,4, Ren-Zhi Hu(胡仁志)1,†, Pin-Hua Xie(谢品华)1,‡, and Ping Luo(罗平)2,3,4
1 Key Laboratory of Environmental Optics&Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 Institute of Environment Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241000, China;
3 State Key Laboratory of Coal Resources in Western China, Xi'an University of Science and Technology, Xi'an 710054, China;
4 Mechanical Engineering School, Anhui University of Science and Technology, Huainan 232001, China
Abstract  Owing to the influence of sampling loss, cavity difference and detecting source, the multi-optical parameter measurement of atmospheric aerosol cannot be detected simultaneously in the same reference environment. In order to solve this problem, a new method of simultaneously detecting the aerosol optical parameters by coupling cavity ring-down spectrometer with photoacoustic spectroscopy is proposed. Firstly, the coupled photoacoustic cavity is formed by the organic fusion of the photoacoustic cavity and the ring-down cavity. Secondly, the integrated design of the coupling spectroscopy system is carried out. Finally, the extinction coefficient and absorption coefficient of aerosol are measured simultaneously by the system, and then the aerosol scattering coefficient and single albedo are calculated indirectly. The accuracy of the system is verified by comparing with the data from the environmental quality monitoring station, which provides a new idea for the detection of multi-optical characteristics of atmospheric aerosol.
Keywords:  spectroscopy      synchronous detection      coupling spectrum      coupled photoacoustic cavity  
Received:  08 October 2021      Revised:  10 December 2021      Accepted manuscript online:  16 December 2021
PACS:  07.88.+y (Instruments for environmental pollution measurements)  
  07.60.Rd (Visible and ultraviolet spectrometers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  43.58.Kr (Spectrum and frequency analyzers and filters; acoustical and electrical oscillographs; photoacoustic spectrometers; acoustical delay lines and resonators)  
Fund: Project supported by the Major Project of Natural Science Research in Universities of Anhui Province, China (Grant No. KJ2021ZD0052), the Open Foundation of Key Laboratory of Environmental Optics and Technology of Chinese Academy of Sciences (Grant No. 2009DP1730652020-03), and the Research and Development Project of Wuhu Research Institute of Anhui University of Science and Technology, China (Grant No. ALW2020YF17).
Corresponding Authors:  Ren-Zhi Hu, Pin-Hua Xie     E-mail:  rzhu@aiofm.ac.cn;phxie@aiofm.ac.cn

Cite this article: 

Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平) Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity 2022 Chin. Phys. B 31 060703

[1] Zhe P, Julia L T, John J O, Geoffrey S T and Jose L J 2019 Atmosph. Chem. Phys. 19 813
[2] Hong Q Q, Liu C, Hu Q H, Xing C Z, Tan W, Liu H R, Huang Y, Zhu Y, Zhang J S, Geng T Z and Liu J G 2019 Atmosph. Res. 228 206
[3] Potier E, Waked A, Bourin A, Minvielle F, Pere J C, Perdrix E, Michoud V, Riffault V, Alleman L Y and Sauvage S 2019 Atmosph. Res. 223 1
[4] Paramesh H 2018 Indian Journal of Pediatrics 85 284
[5] Ferrero L, Ritter C, Cappelletti D, Moroni B, Mocnik G, Mazzola M and Lupi A 2019 Science of the Total Environment. 686 452
[6] Leung W F and Choy H F 2018 Chem. Eng. Sci. 182 67
[7] Yang Z H, Yang Y C, Deng L Z and Yin J P 2018 Chin. Phys. B 27 100601
[8] Odame-Ankrah C A and Osthoff H D 2011 Appl. Spectroscopy 65 1260
[9] Gong P, Xie L, Qi X Q, Wang R, Wang H, Cheng M C, Yang H X, Sun F and Li G P 2015 Chin. Phys. B 24 014206
[10] Jin H W, Xie P H, Hu R Z, Huang C C, Lin C and Wang F Y 2020 Chin. Phys. B 29 060701
[11] Wang H C, Chen J and Lu K D 2017 Atmosph. Measur. Techniq. 10 1465
[12] Aalto A, Genty G, Laurila T and Toivonen J 2015 Opt. Express 23 25225
[13] Wan S, Torkashvand B, Haber T, Suntz R and Deutschmann O 2020 Appl. Catalysis B-Environmental 264 118473
[14] Wang F Y, Hu R Z, Chen H, Xie P H, Wang Y H, Li Z Y, Jin H W, Liu J G and Liu W Q 2019 Opt. Express 27 A419
[15] Chen J, Qian X M, Liu Q, Zheng J J, Zhu W Y and Li X B 2020 Spectroscopy and Spectral Analysis 40 2989
[16] Liu Q, Huang H H, Wang Y, Wang G S, Cao Z S, Liu K, Chen W D and Gao X M 2014 Chin. Phys. B 23 228
[17] Li L, Chen J M, Chen H, Yang X, Tang Y and Zhang R Y 2011 Journal of Aerosol Science 42 277
[18] Zhao W X, Xu X Z, Fang B, Zhang Q L, Qian X D, Wang S and Liu P 2017 Appl. Opt. 56 E16
[19] Dial K D, Hiemstra S and Thompson J E 2010 Anal. Chem. 82 7885
[20] Sharma N, Arnold I J, Moosmuller H, Arnott W P and Mazzoleni C 2013 Atmosph. Measur. Techniq. 6 3501
[21] Thompson J E, Barta N, Policarpio D and DuVall R 2008 Opt. Express 16 2191
[22] Ma L L and Thompson J E 2012 Anal. Chem. 84 5611
[23] Li Z Y, Hu R Z, Xie P H, Chen H, Liu X Y, Liang S X, Wang D, Wang F Y, Wang Y H, Lin C, Liu J G and Liu W Q 2019 Atmosph. Measur. Techniq. 12 3223
[24] Li Z Y, Hu R Z, Xie P H, Wang H C Lu K D and Wang D 2018 Science of The Total Environment 613-614 131
[25] Jin H W, Hu R Z, Xie P H, Huang C C, Wang F Y and Lin C 2020 IEEE Photon. J. 12 1
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[3] LAMOST medium-resolution spectroscopic survey of binarity and exotic star (LAMOST-MRS-B): Observation strategy and target selection
Jiao Li(李蛟), Jiang-Dan Li(李江丹), Yan-Jun Guo(郭彦君), Zhan-Wen Han(韩占文), Xue-Fei Chen(陈雪飞), Chao Liu(刘超), Hong-Wei Ge(葛宏伟), Deng-Kai Jiang(姜登凯), Li-Fang Li(李立芳), Bo Zhang(章博), Jia-Ming Liu(刘佳明), Hao Tian(田浩), Hao-Tong Zhang(张昊彤), Hai-Long Yuan(袁海龙), Wen-Yuan Cui(崔文元),Juan-Juan Ren(任娟娟), Jing-Hao Cai(蔡靖豪), and Jian-Rong Shi(施建荣). Chin. Phys. B, 2023, 32(1): 019501.
[4] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[5] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[6] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[7] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[8] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[15] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
No Suggested Reading articles found!