Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 128701    DOI: 10.1088/1674-1056/ab4f60
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of refractory period on dynamical range inexcitable networks

Ya-Qin Dong(董亚琴)1, Fan Wang(王帆)1, Sheng-Jun Wang(王圣军)1, Zi-Gang Huang(黄子罡)2
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
2 School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Effects of refractory period on the dynamical range in excitable networks are studied by computer simulations and theoretical analysis. The first effect is that the maximum or peak of the dynamical range appears when the largest eigenvalue of adjacent matrix is larger than one. We present a modification of the theory of the critical point by considering the correlation between excited nodes and their neighbors, which is brought by the refractory period. Our analysis provides the interpretation for the shift of the peak of the dynamical range. The effect is negligible when the average degree of the network is large. The second effect is that the dynamical range increases as the length of refractory period increases, and it is independent of the average degree. We present the mechanism of the second effect. As the refractory period increases, the saturated response decreases. This makes the bottom boundary of the dynamical range smaller and the dynamical range extend.
Keywords:  criticality      branching process      random network      dynamical range  
Received:  04 July 2019      Revised:  14 October 2019      Accepted manuscript online: 
PACS:  87.18.Sn (Neural networks and synaptic communication)  
  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.lj (Neuronal network dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675096), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201702001), and the Fund for the Academic Leaders and Academic Backbones, Shaanxi Normal University of China (Grant No. 16QNGG007).
Corresponding Authors:  Sheng-Jun Wang     E-mail:  wangshjun@snnu.edu.cn

Cite this article: 

Ya-Qin Dong(董亚琴), Fan Wang(王帆), Sheng-Jun Wang(王圣军), Zi-Gang Huang(黄子罡) Effects of refractory period on dynamical range inexcitable networks 2019 Chin. Phys. B 28 128701

[1] Bak P, Tang C and Wiesenfeld K 1987 Phys. Rev. Lett. 59 381
[2] Li B Q and Wang S J 2018 Commun. Theor. Phys. 69 280
[3] Sun B A and Wang L F 2017 Acta Phys. Sin. 66 178103 (in Chinese)
[4] Zheng Q, Wang Z and Shen J 2017 Chin. Phys. B 26 020501
[5] Qu L H, Du L and Deng Z C 2018 Chin. Phys. B 27 118707
[6] Gu C G, Wang P and Yang H J 2019 Chin. Phys. B 28 018701
[7] Li G F and Sun X J 2017 Acta Phys. Sin. 66 240501 (in Chinese)
[8] Xue X D, Wang M L 2019 Acta Phys. Sin. 68 078701 (in Chinese)
[9] Beggs J M, Plenz D 2003 J. Neurosci. 23 11167
[10] Haldeman C and Beggs J M 2005 Phys. Rev. Lett. 94 058101
[11] Kinouchi O and Copelli M 2006 Nat. Phys. 2 348
[12] Wang S J, Ouyang G, Guang J, Zhang M, Wong K M and Zhou C 2016 Phys. Rev. Lett. 116 018101
[13] Shew W L, Yang H, Petermann T, Roy R and Plenz D 2009 J. Neurosci. 29 15595
[14] Gautam S H, Hoang T T, McClanahan K, Grady S K and Shew W L 2015 PLoS Comput. Biol. 11 e1004576
[15] Wu A C, Xu X J and Wang Y H 2007 Phys. Rev. E 75 032901
[16] Wang C Y, Wu Z X and Chen M Z Q 2017 Phys. Rev. E 95 012310
[17] Larremore D B, Shew W L and Restrepo J G 2011 Phys. Rev. Lett. 106 058101
[18] Larremore D B, Shew W L, Ott E and Restrepo J G 2011 Chaos 21 025117
[19] Wang F and Wang S J 2019 Commun. Theor. Phys. 71 746
[20] Pei S, Tang S, Yan S, Jiang S, Zhang X and Zheng Z 2012 Phys. Rev. E 86 021909
[21] Gollo L L, Mirasso C and Eguíluz V M 2012 Phys. Rev. E 85 040902
[22] Moosavi S A, Montakhab A and Valizadeh A 2017 Sci. Rep. 7 7107
[1] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[2] Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids
Jun Liu(柳军), Hua Tong(童华), Yunhuan Nie(聂运欢), and Ning Xu(徐宁). Chin. Phys. B, 2020, 29(12): 126302.
[3] Quasi-periodic events on structured earthquake models
Bin-Quan Li(李斌全), Zhi-Xi Wu(吴枝喜), Sheng-Jun Wang(王圣军). Chin. Phys. B, 2019, 28(9): 090503.
[4] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
[5] Typicality at quantum-critical points
Lu Liu(刘录), Anders W Sandvik, Wenan Guo(郭文安). Chin. Phys. B, 2018, 27(8): 087501.
[6] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[7] Pattern dynamics of network-organized system with cross-diffusion
Qianqian Zheng(郑前前), Zhijie Wang(王直杰), Jianwei Shen(申建伟). Chin. Phys. B, 2017, 26(2): 020501.
[8] Bursty events and incremental diffusion in a local diffusion and multi-scale convection system
Xu Guo-Sheng (徐国盛), Wan Bao-Nian (万宝年), Song Mei (宋梅). Chin. Phys. B, 2003, 12(2): 189-197.
[9] EARTHQUAKE SCALING PARADOX
Wu Zhong-liang (吴忠良). Chin. Phys. B, 2001, 10(5): 395-397.
[10] SELF-ORGANIZED CRITICALITY IN ONE-DIMENSIONAL PACKET FLOW MODEL
Yuan Jian (袁坚), Ren Yong (任勇), Shan Xiu-ming (山秀明). Chin. Phys. B, 2000, 9(9): 641-648.
No Suggested Reading articles found!