Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 126701    DOI: 10.1088/1674-1056/ab4e8a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Accelerate Bose-Einstein condensate by interaction

Jie-Li Qin(秦杰利)
School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China
Abstract  In recent years, accelerating waves have attracted great research interests both due to their unique properties and tempting applications. Here we investigate the effect of the inter-particle interaction on accelerating of Bose-Einstein condensate (BEC). We show that spatially homogeneous interactions will have no accelerating effect on BEC regardless of the interaction form (contact, dipole-dipole, or any others). But spatially inhomogeneous interactions may lead to an accelerating motion of the condensate. As an example, the accelerating dynamic of BEC under a spatially linear modulated contact interaction is studied in detail. It is found that such an interaction will accelerate the condensate with a time varying acceleration. Furthermore, an interaction engineering scheme to achieve constantly accelerating BEC is proposed and studied numerically. Numerical results suggest that this engineering scheme can also suppress profile changing of the condensate during its evolution, thus realize an accelerating profile-keeping matter wave packet. Our analysis also applies to optical waves with Kerr nonlinearity.
Keywords:  Bose-Einstein condensate      interaction      acceleration  
Received:  09 May 2019      Revised:  04 September 2019      Accepted manuscript online: 
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  03.67.Bg (Entanglement production and manipulation)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11847059 and 11904063).
Corresponding Authors:  Jie-Li Qin     E-mail:  104531@gzhu.edu.cn,qinjieli@126.com

Cite this article: 

Jie-Li Qin(秦杰利) Accelerate Bose-Einstein condensate by interaction 2019 Chin. Phys. B 28 126701

[35] Pal S and Bhattacharjee J K 2017 Eur. Phys. J. D 71 291
[1] Robins N P, Altin P A, Debs J E and Close J D 2013 Phys. Rep. 529 265
[36] Landini M, Roy S, Roati G, Simoni A, Inguscio M, Modugno G and Fattori M 2012 Phys. Rev. A 86 033421
[2] Ketterle W 2002 Rev. Mod. Phys. 74 1131
[37] Fattori M, D’Errico C, Roati G, Zaccanti M, Jona-Lasinio M, Modugno M, Inguscio M and Modugno G 2008 Phys. Rev. Lett. 100 080405
[3] Cronin A D and Schmiedmayer J 2009 Rev. Mod. Phys. 81 1051
[38] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[4] Lee C, Huang J, Deng H, Dai H and Xu J 2012 Front. Phys. 7 109
[39] Hardman K S, Everitt P J, McDonald G D, Manju P, Wigley P B, Sooriyabandara M A, Kuhn C C N, Debs J E, Close J D and Robins N P 2016 Phys. Rev. Lett. 117 138501
[5] Gaunt A L and Hadzibabic Z 2012 Sci. Rep. 2 721
[40] Yao R, Sun Z D, Zhou S Y, Wang Y, Wang Y Z, Yao R, Sun Z D, Zhou S Y, Wang Y and Wang Y Z 2018 Chin. Phys. B 27 016703
[6] Fujita J, Mitake S and Shimizu F 2000 Phys. Rev. Lett. 84 4027
[41] Comparat D, Fioretti A, Stern G, Dimova E, Tolra B L and Pillet P 2006 Phys. Rev. A 73 043410
[7] Zobay O, Goldstein E V and Meystre P 1999 Phys. Rev. A 60 3999
[42] van der Stam K M R, van Ooijen E D, Meppelink R, Vogels J M and van der Straten P 2007 Rev. Sci. Instrum. 78 013102
[8] Gangat A, Pradhan P, Pati G and Shahriar M S 2005 Phys. Rev. A 71 043606
[43] Marteau F, Ghaith A, N’Gotta P, Benabderrahmane C, Valléau M, Kitegi C, Loulergue A, Vétéran J, Sebdaoui M, André T, Le Bec G, Chavanne J, Vallerand C, Oumbarek D, Cosson O, Forest F, Jivkov P, Lancelot J L and Couprie M E 2017 Appl. Phys. Lett. 111 253503
[9] Fouda M F, Fang R, Ketterson J B and Shahriar M S 2016 Phys. Rev. A 94 063644
[44] Malomed B A, Mihalache D, Wise F and Torner L 2005 J. Opt. B 7 R53
[10] Lu H C, Zhai Y Y, Pan R Z and Yang S F 2014 Chin. Phys. B 23 93701
[45] Abdullaev F K and Garnier J 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (Berlin, Heidelberg: Springer Berlin Heidelberg) pp. 25-43
[11] Yuce C 2015 Mod. Phys. Lett. B 29, 1550171
[46] Weideman J and Herbst B 1986 SIAM J. Numer. Anal. 23 485
[12] Pötting S, Cramer M, Schwalb C H, Pu H and Meystre P 2001 Phys. Rev. A 64 023604
[47] Succi S, Toschi F, Tosi M P and Vignolo P 2005 Comput. Sci. Eng. 7 48
[13] Saif F and Rehman I 2007 Phys. Rev. A 75 043610
[48] Nils H 2013 Rydberg-dressed Bose-Einstein condensates (Ph.D. Dissertation) (Dresden: Technische Universität Dresden)
[14] Berry M V and Balazs N L 1979 Am. J. Phys. 47, 264
[49] Agrawal G P 2006 Nonlinear Fiber Optics (4th Edn.) (San Diego: Academic Press) pp. 25–50
[15] Hu Y, Siviloglou G A, Zhang P, Efremidis N K, Christodoulides D N and Chen Z 2012 Nonlinear Photonics and Novel Optical Phenomena (New York, NY: Springer New York) pp. 1–46
[16] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979
[17] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901
[18] Voloch-Bloch N, Lereah Y, Lilach Y, Gover A and Arie A 2013 Nature 494 331
[19] Efremidis N K, Paltoglou V and von Klitzing W 2013 Phys. Rev. A 87 043637
[20] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[21] Timmermans E, Tommasini P, Hussein M and Kerman A 1999 Phys. Rep. 315 199
[22] Liang Z X, Zhang Z D and Liu W M 2006 Mod. Phys. Lett. A 21 383
[23] Dong G and Hu B 2007 Phys. Rev. A 75 013625
[24] Rodrigues A S, Kevrekidis P G, Porter M A, Frantzeskakis D J, Schmelcher P and Bishop A R 2008 Phys. Rev. A 78 13611
[25] Wang D S, Hu X H, Hu J and Liu W M 2010 Phys. Rev. A 81 025604
[26] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 53607
[27] Li K, Kevrekidis P G, Malomed B A and Frantzeskakis D J 2011 Phys. Rev. E 84 056609
[28] Zhang S L, Zhou Z W and Wu B 2013 Phys. Rev. A 87 013633
[29] Xin X T, Huang F, Xu Z J and Li H B 2014 Chin. Phys. B 23 070307
[30] Zhao W L, Ding C Y, Liu J and Fu L B 2016 J. Phys. B 49 125303
[31] Zhu K Q, Yu Z F, Gao J M, Zhang A X, Xu H P and Xue J K 2019 Chin. Phys. B 28 10307
[32] Petrov D S, Shlyapnikov G V and Walraven J T M 2000 Phys. Rev. Lett. 85 3745
[33] Görlitz A, Vogels J M, Leanhardt A E, Raman C, Gustavson T L, Abo-Shaeer J R, Chikkatur A P, Gupta S, Inouye S, Rosenband T and Ketterle W 2001 Phys. Rev. Lett. 87 130402
[34] Bromley M W J and Esry B D 2004 Phys. Rev. A 69 053620
[35] Pal S and Bhattacharjee J K 2017 Eur. Phys. J. D 71 291
[36] Landini M, Roy S, Roati G, Simoni A, Inguscio M, Modugno G and Fattori M 2012 Phys. Rev. A 86 033421
[37] Fattori M, D’Errico C, Roati G, Zaccanti M, Jona-Lasinio M, Modugno M, Inguscio M and Modugno G 2008 Phys. Rev. Lett. 100 080405
[38] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[39] Hardman K S, Everitt P J, McDonald G D, Manju P, Wigley P B, Sooriyabandara M A, Kuhn C C N, Debs J E, Close J D and Robins N P 2016 Phys. Rev. Lett. 117 138501
[40] Yao R, Sun Z D, Zhou S Y, Wang Y, Wang Y Z, Yao R, Sun Z D, Zhou S Y, Wang Y and Wang Y Z 2018 Chin. Phys. B 27 016703
[41] Comparat D, Fioretti A, Stern G, Dimova E, Tolra B L and Pillet P 2006 Phys. Rev. A 73 043410
[42] van der Stam K M R, van Ooijen E D, Meppelink R, Vogels J M and van der Straten P 2007 Rev. Sci. Instrum. 78 013102
[43] Marteau F, Ghaith A, N’Gotta P, Benabderrahmane C, Valléau M, Kitegi C, Loulergue A, Vétéran J, Sebdaoui M, André T, Le Bec G, Chavanne J, Vallerand C, Oumbarek D, Cosson O, Forest F, Jivkov P, Lancelot J L and Couprie M E 2017 Appl. Phys. Lett. 111 253503
[44] Malomed B A, Mihalache D, Wise F and Torner L 2005 J. Opt. B 7 R53
[45] Abdullaev F K and Garnier J 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (Berlin, Heidelberg: Springer Berlin Heidelberg) pp. 25-43
[46] Weideman J and Herbst B 1986 SIAM J. Numer. Anal. 23 485
[47] Succi S, Toschi F, Tosi M P and Vignolo P 2005 Comput. Sci. Eng. 7 48
[48] Nils H 2013 Rydberg-dressed Bose-Einstein condensates (Ph.D. Dissertation) (Dresden: Technische Universität Dresden)
[49] Agrawal G P 2006 Nonlinear Fiber Optics (4th Edn.) (San Diego: Academic Press) pp. 25–50
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[4] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[5] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[6] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[7] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[8] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[9] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[10] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[11] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[12] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[13] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[14] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[15] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
No Suggested Reading articles found!