Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124204    DOI: 10.1088/1674-1056/ab4d45
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer

Jia-Jia Mu(牟佳佳)1, Chang-Yi He(何畅意)1, Wei-Jie Sun(孙伟杰)2, Yue Guan(管越)1
1 College of Science, Beihua University, Jilin 132013, China;
2 Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We describe the synthesis of three-dimensional (3D) multilayer ZnO@Ag/SiO2@Ag nanorod arrays by the physico-chemical method. The surface-enhanced Raman scattering (SERS) performance of the 3D multilayer ZnO@Ag/SiO2@Ag nanorod arrays is studied by varying the thickness of dielectric layer SiO2 and outer-layer noble Ag. The 3D ZnO@Ag/SiO2@Ag nanorod arrays create a huge number of SERS “hot spots” that mainly contribute to the high SERS sensitivity. The great enhancement of SERS results from the electron transfer between ZnO and Ag and different electromagnetic enhancements of Ag nanoparticles (NPs) with different thicknesses. Through the finite-difference time-domain (FDTD) theoretical simulation, the enhancement of SERS signal can be ascribed to a strong electric field enhancement produced in the 3D framework. The simplicity and generality of our method offer great advantages for further understanding the SERS mechanism induced by the surface plasmon resonance (SPR) effect.
Keywords:  ZnO      multilayer composite structure      surface-enhanced Raman scattering (SERS)      dielectric layer      electromagnetic field enhancement  
Received:  06 June 2019      Revised:  24 August 2019      Accepted manuscript online: 
PACS:  42.55.Ye (Raman lasers)  
  02.70.Bf (Finite-difference methods)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the Fund from the Science and Technology Department of Jilin Province, China (Grant No. 20170520108JH), the Beihua University Youth Nurtural Fund, China (Grant No. 2017QNJJL15), the Beihua University PhD Research Start-up Fund, China (Grant No. 202116140), and the Undergraduate Innovation Project, China (Grant No. 220718100).
Corresponding Authors:  Jia-Jia Mu     E-mail:  allthat2010@126.com

Cite this article: 

Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越) Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer 2019 Chin. Phys. B 28 124204

[1] Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R and Tripp R A 2006 Nano Lett. 6 2630
[2] Kneipp K and Kneipp H 2006 Accounts. Chem. Res. 39 443
[3] Deng X G, Brartiun G B, Liu S, Sciortino P F, Koefer B, Tombler T and Moskovits M 2010 Nano Lett. 10 1780
[4] Fang Z, Cai J, Yan Z, Nordlander P, Halas N J and Zhu X 2011 Nano Lett. 11 4475
[5] Tong L M, Xu H X 2012 Physics 41 582 (in Chinese)
[6] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[7] Brolo A G 2012 Nat Photon. 6 709
[8] Zhao J, Sun M T, Liu Z, Quan B G, Gu C Z and Li J J 2015 Sci. Rep. 5 16019
[9] Naik G V, Shalaev V M and Boltasseva A 2013 Adv. Mater. 25 3264
[10] Comin A and Manna L 2014 Chem. Soc. Rev. 43 3957
[11] Liu L W, Zhou W Q, Zeng Z Q and Jin M L 2016 J. Raman Spectrosc. 47 1200
[12] Zhang Y J, Sun H H, Gao R X, Zhang F, Zhu A and Chen L 2018 Sens. & Actuators B: Chemical 272 34
[13] Chen C, Zhou X, Ding T T, Zhang J, Wang S, Xu J, Chen J W, Dai J N and Chen C Q 2016 Mater. Lett. 165 55
[14] Zhou J, Zhang J S, Xian G, Qi Q, Gu S Z, Shen C M, Cheng S H, He S T and Yang H T 2019 Chin. Phys. B 28 083301
[15] Huang T, Cao L, Zhang X, Xiong X Y, Xu J J and Xiao R S 2019 J. Alloys Compd. 790 127
[16] Wu C L, Hsueh C H and Li J H 2019 Opt. Express 27 1660
[17] Liu Y J, Xu C X, Zhu Z, You D T, Wang R, Qin F F, Wang X X, Cui Q N and Shi Z L 2018 Cryst. Growth & Design 18 5279
[18] Pal A K, Pagal S, Prashanth K, Chandra G K, Umapathy S and Mohan D B 2019 Sens. & Actuators B: Chemical 279 157
[19] Yang J L, Li R P, Han J H and Huang M J 2016 Chin. Phys. B 25 083301
[20] Tian Y, Wang H F, Yan L Q, Zhang X F, Attia F, Chen P P, Dong F L, Sun L F and Chu W G 2018 Chin. Phys. B 27 077406
[21] Lei S J, Tao C J, Li J L, Zhao X and Wang W Z 2018 Appl. Surf. Sci. 452 148
[22] Li J F, Anema J R, Wandlowski T and Tian Z Q 2015 Chem. Soc. Rev. 44 8399
[23] Tang H B, Meng G W, Huang Q, Zhang Z, Huang Z L and Zhu C H 2012 Adv. Funct. Mater. 22 218
[24] Zhao Y, Zeng W C, Tao Z C, Xiong P H, Qu Y and Zhu Y W 2015 Chem. Commun. 51 866
[25] Huang J A, Zhao Y Q, Zhang X J, He L F, Wong T L, Chui Y S, Zhang W J and Lee S T 2013 Nano Lett. 13 5039
[26] Hu Z S, Liu Z, Li L, Quan B G, Li Y J, Li J and Gu C Z 2014 Small 10 3933
[27] Xu L L, Li S, Li F, Zhang H, Wang D M, Chen M and Chen F 2017 Opt. Mater. Express 7 3137
[28] Liu K, Bai Y, Zhang L, Yang Z, Fan Q, Zheng H, Yin Y and Gao C 2016 Nano Lett. 16 3675
[29] Ma L W, Huang Y, Hou M J, Li J H, Xie Z and Zhang Z J 2016 J. Phys. Chem. C 120 606
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[5] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[6] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[9] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[10] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[11] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[12] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[13] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[14] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[15] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
No Suggested Reading articles found!