|
|
Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation |
Munsif Jan1,2, Xiao-Ye Xu(许小冶)1,2, Qin-Qin Wang(王琴琴)1,2, Zhe Chen(陈哲)1,2, Yong-Jian Han(韩永建)1,2, Chuan-Feng Li(李传锋)1,2, Guang-Can Guo(郭光灿)1,2 |
1 Key Laboratory of Quantum Information of Chinese Academy of Sciences(CAS), University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Preserving non-Markovianity and quantum entanglement from decoherence effect is of theoretical and practical significance in the quantum information processing technologies. In this context, we study a system S that is initially correlated with an ancilla A, which interacts with the environment E via an amplitude damping channel. We also consider dipole-dipole interactions (DDIs) between the system and ancilla, which are responsible for strong correlations. We investigate the impact of DDIs and detuning on the non-Markovianity and information exchange in different environments. We show that DDIs are not only better than detuning at protecting the information (without destroying the memory effect) but also induce memory by causing a transition from Markovian to non-Markovian dynamics. In contrast, although detuning also protects the information, it causes a transition from non-Markovian to the Markovian dynamics. In addition, we demonstrate that the non-Markovianity grows with increasing DDI strength and diminishes with increasing detuning. We also show that the effects of negative detuning and DDIs can cancel out each other, causing a certain loss of coherence and information.
|
Received: 10 June 2019
Revised: 10 July 2019
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304100 and 2016YFA0302700), the National Natural Science Foundation of China (Grant Nos. 61327901, 11474267, 11774335, and 61322506), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH003), the Fundamental Research Funds for the Central Universities, China (Grnat No. WK2470000026), the National Postdoctoral Program for Innovative Talents, China (Grant No. BX201600146), China Postdoctoral Science Foundation (Grant No. 2017M612073), and Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY020100). The author Munsif Jan is thankful to the China Scholarship Council (CSC) for financial support (Grant No. 10358). |
Corresponding Authors:
Chuan-Feng Li
E-mail: cfli@ustc.edu.cn
|
Cite this article:
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿) Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation 2019 Chin. Phys. B 28 090303
|
[42] |
Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
|
[1] |
Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
|
[43] |
Smirne A, Brivio D, Cialdi S, Vacchini B and Paris M G A 2011 Phys. Rev. A 84 032112
|
[2] |
Shor P W 1995 Phys. Rev. A 52 R2493
|
[44] |
Bernardes N K, Cuevas A, Orieux A, Monken C, Mataloni P, Sciarrino F and Santos M F 2015 Sci. Rep. 5 17520
|
[3] |
Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
|
[45] |
Yuan J B, Xing H J, Kuang L M and Yi S 2017 Phys. Rev. A 95 033610
|
[4] |
Du J, Rong X, Zhao N, Wang Y, Yang J and Liu R B 2009 Nature 461 1265
|
[46] |
Zurek W H 1981 Phys. Rev. D 24 1516
|
[5] |
Singh H, Arvind and Dorai K 2018 Phys. Rev. A 97 022302
|
[47] |
Zurek W H 2003 Rev. Mod. Phys. 75 715
|
[6] |
Peng S J, Xu X K, Xu K B, Huang P, Wang P F, Kong X, Rong X, Shi F Z, Duan C K and Du J F 2018 Sci. Bull. 63 336
|
[48] |
Li J G, Zou J and Shao B 2010 Phys. Rev. A 81 062124
|
[7] |
Gong B, Tu T, Zhou Z Q, Zhu X Y, Li C F and Guo G C 2017 Sci. Rep. 7 18030
|
[49] |
Henderson L and Vedral V 2001 J. Phys. A:Math. Gen. 34 6899
|
[8] |
Wang S C, Yu Z W, Zou W J and Wang X B 2014 Phys. Rev. A 89 022318
|
[50] |
Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
|
[9] |
Li Y, Zhou J and Guo H 2009 Phys. Rev. A 79 012309
|
[51] |
Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
|
[10] |
Khan S and Jan M 2016 Int. J. Theor. Phys. 55 1515
|
[52] |
Breuer H P 2012 J. Phys. B:At. Mol. Opt. Phys. 45 154001
|
[11] |
Rosario A, Massoni E and De Zela F 2012 J. Phys. B:At. Mol. Opt. Phys. 45 095501
|
[53] |
Koashi M and Winter A 2004 Phys. Rev. A 69 022309
|
[12] |
Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
|
[54] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[13] |
Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
|
[14] |
Yang G, Lian B W and Nie M 2016 Chin. Phys. B 25 080310
|
[15] |
Golkar S and Tavassoly M K 2018 Chin. Phys. B 27 040303
|
[16] |
Yazdanpanah N and Tavassoly M K 2016 J. Opt. Soc. Am. B 33 382
|
[17] |
Zhang Y Q, Tan L and Barker P 2014 Phys. Rev. A 89 043838
|
[18] |
Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D and Kimble H J 2005 J. Phys. B:At. Mol. Opt. Phys. 38 S551
|
[19] |
Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
|
[20] |
Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
|
[21] |
Franco R L, Bellomo B, Maniscalco S and Compagno G 2013 Int. J. Mod. Phys. B 27 1345053
|
[22] |
Piilo J, Maniscalco S, Härkönen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402
|
[23] |
Tang J S, Li C F, Li Y L, Zou X B, Guo G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
|
[24] |
Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E, Franco R L and Compagno G 2013 Nat. Commun. 4 2851
|
[25] |
Fanchini F F, Karpat G, Castelano L K and Rossatto D Z 2013 Phys. Rev. A 88 012105
|
[26] |
Chrusćiński D and Maniscalco S 2014 Phys. Rev. Lett. 112 120404
|
[27] |
Addis C, Bylicka B, Chrusćiński D and Maniscalco S 2014 Phys. Rev. A 90 052103
|
[28] |
Smirne A, Cialdi S, Anelli G, Paris M G A and Vacchini B 2013 Phys. Rev. A 88 012108
|
[29] |
Vasile R, Olivares S, Paris M A and Maniscalco S 2011 Phys. Rev. A 83 042321
|
[30] |
Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
|
[31] |
Zhang S L, Jin C H, Guo J S, Shi J H, Zou X B and Guo G C 2016 Chin. Phys. Lett. 33 120302
|
[32] |
Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
|
[33] |
Huelga S F, Rivas A and Plenio M B 2012 Phys. Rev. Lett. 108 160402
|
[34] |
Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
|
[35] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[36] |
Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
|
[37] |
Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
|
[38] |
Fanchini F F, Karpat G, Çakmak B, Castelano L K, Aguilar G H, Farías O J, Walborn S P, Ribeiro P H S and de Oliveira M C 2014 Phys. Rev. Lett. 112 210402
|
[39] |
Haseli S, Karpat G, Salimi S, Khorashad A S, Fanchini F F, Çakmak B, Aguilar G H, Walborn S P and Ribeiro P H S 2014 Phys. Rev. A 90 052118
|
[40] |
Ravets S, Labuhn H, Barredo D, Béguin L, Lahaye T and Browaeys A 2014 Nat. Phys. 10 914
|
[41] |
Genkin M, Schönleber D, Wüster S and Eisfeld A 2016 J. Phys. B:At. Mol. Opt. Phys. 49 134001
|
[42] |
Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
|
[43] |
Smirne A, Brivio D, Cialdi S, Vacchini B and Paris M G A 2011 Phys. Rev. A 84 032112
|
[44] |
Bernardes N K, Cuevas A, Orieux A, Monken C, Mataloni P, Sciarrino F and Santos M F 2015 Sci. Rep. 5 17520
|
[45] |
Yuan J B, Xing H J, Kuang L M and Yi S 2017 Phys. Rev. A 95 033610
|
[46] |
Zurek W H 1981 Phys. Rev. D 24 1516
|
[47] |
Zurek W H 2003 Rev. Mod. Phys. 75 715
|
[48] |
Li J G, Zou J and Shao B 2010 Phys. Rev. A 81 062124
|
[49] |
Henderson L and Vedral V 2001 J. Phys. A:Math. Gen. 34 6899
|
[50] |
Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
|
[51] |
Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
|
[52] |
Breuer H P 2012 J. Phys. B:At. Mol. Opt. Phys. 45 154001
|
[53] |
Koashi M and Winter A 2004 Phys. Rev. A 69 022309
|
[54] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|