Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 090303    DOI: 10.1088/1674-1056/ab37f2
GENERAL Prev   Next  

Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation

Munsif Jan1,2, Xiao-Ye Xu(许小冶)1,2, Qin-Qin Wang(王琴琴)1,2, Zhe Chen(陈哲)1,2, Yong-Jian Han(韩永建)1,2, Chuan-Feng Li(李传锋)1,2, Guang-Can Guo(郭光灿)1,2
1 Key Laboratory of Quantum Information of Chinese Academy of Sciences(CAS), University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

Preserving non-Markovianity and quantum entanglement from decoherence effect is of theoretical and practical significance in the quantum information processing technologies. In this context, we study a system S that is initially correlated with an ancilla A, which interacts with the environment E via an amplitude damping channel. We also consider dipole-dipole interactions (DDIs) between the system and ancilla, which are responsible for strong correlations. We investigate the impact of DDIs and detuning on the non-Markovianity and information exchange in different environments. We show that DDIs are not only better than detuning at protecting the information (without destroying the memory effect) but also induce memory by causing a transition from Markovian to non-Markovian dynamics. In contrast, although detuning also protects the information, it causes a transition from non-Markovian to the Markovian dynamics. In addition, we demonstrate that the non-Markovianity grows with increasing DDI strength and diminishes with increasing detuning. We also show that the effects of negative detuning and DDIs can cancel out each other, causing a certain loss of coherence and information.

Keywords:  decoherence      non-Markovianity      dipole-dipole interactions      entanglement  
Received:  10 June 2019      Revised:  10 July 2019      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304100 and 2016YFA0302700), the National Natural Science Foundation of China (Grant Nos. 61327901, 11474267, 11774335, and 61322506), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH003), the Fundamental Research Funds for the Central Universities, China (Grnat No. WK2470000026), the National Postdoctoral Program for Innovative Talents, China (Grant No. BX201600146), China Postdoctoral Science Foundation (Grant No. 2017M612073), and Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY020100). The author Munsif Jan is thankful to the China Scholarship Council (CSC) for financial support (Grant No. 10358).

Corresponding Authors:  Chuan-Feng Li     E-mail:  cfli@ustc.edu.cn

Cite this article: 

Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿) Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation 2019 Chin. Phys. B 28 090303

[42] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
[1] Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
[43] Smirne A, Brivio D, Cialdi S, Vacchini B and Paris M G A 2011 Phys. Rev. A 84 032112
[2] Shor P W 1995 Phys. Rev. A 52 R2493
[44] Bernardes N K, Cuevas A, Orieux A, Monken C, Mataloni P, Sciarrino F and Santos M F 2015 Sci. Rep. 5 17520
[3] Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
[45] Yuan J B, Xing H J, Kuang L M and Yi S 2017 Phys. Rev. A 95 033610
[4] Du J, Rong X, Zhao N, Wang Y, Yang J and Liu R B 2009 Nature 461 1265
[46] Zurek W H 1981 Phys. Rev. D 24 1516
[5] Singh H, Arvind and Dorai K 2018 Phys. Rev. A 97 022302
[47] Zurek W H 2003 Rev. Mod. Phys. 75 715
[6] Peng S J, Xu X K, Xu K B, Huang P, Wang P F, Kong X, Rong X, Shi F Z, Duan C K and Du J F 2018 Sci. Bull. 63 336
[48] Li J G, Zou J and Shao B 2010 Phys. Rev. A 81 062124
[7] Gong B, Tu T, Zhou Z Q, Zhu X Y, Li C F and Guo G C 2017 Sci. Rep. 7 18030
[49] Henderson L and Vedral V 2001 J. Phys. A:Math. Gen. 34 6899
[8] Wang S C, Yu Z W, Zou W J and Wang X B 2014 Phys. Rev. A 89 022318
[50] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
[9] Li Y, Zhou J and Guo H 2009 Phys. Rev. A 79 012309
[51] Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
[10] Khan S and Jan M 2016 Int. J. Theor. Phys. 55 1515
[52] Breuer H P 2012 J. Phys. B:At. Mol. Opt. Phys. 45 154001
[11] Rosario A, Massoni E and De Zela F 2012 J. Phys. B:At. Mol. Opt. Phys. 45 095501
[53] Koashi M and Winter A 2004 Phys. Rev. A 69 022309
[12] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[54] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[13] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
[14] Yang G, Lian B W and Nie M 2016 Chin. Phys. B 25 080310
[15] Golkar S and Tavassoly M K 2018 Chin. Phys. B 27 040303
[16] Yazdanpanah N and Tavassoly M K 2016 J. Opt. Soc. Am. B 33 382
[17] Zhang Y Q, Tan L and Barker P 2014 Phys. Rev. A 89 043838
[18] Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D and Kimble H J 2005 J. Phys. B:At. Mol. Opt. Phys. 38 S551
[19] Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
[20] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[21] Franco R L, Bellomo B, Maniscalco S and Compagno G 2013 Int. J. Mod. Phys. B 27 1345053
[22] Piilo J, Maniscalco S, Härkönen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402
[23] Tang J S, Li C F, Li Y L, Zou X B, Guo G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
[24] Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E, Franco R L and Compagno G 2013 Nat. Commun. 4 2851
[25] Fanchini F F, Karpat G, Castelano L K and Rossatto D Z 2013 Phys. Rev. A 88 012105
[26] Chrusćiński D and Maniscalco S 2014 Phys. Rev. Lett. 112 120404
[27] Addis C, Bylicka B, Chrusćiński D and Maniscalco S 2014 Phys. Rev. A 90 052103
[28] Smirne A, Cialdi S, Anelli G, Paris M G A and Vacchini B 2013 Phys. Rev. A 88 012108
[29] Vasile R, Olivares S, Paris M A and Maniscalco S 2011 Phys. Rev. A 83 042321
[30] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[31] Zhang S L, Jin C H, Guo J S, Shi J H, Zou X B and Guo G C 2016 Chin. Phys. Lett. 33 120302
[32] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[33] Huelga S F, Rivas A and Plenio M B 2012 Phys. Rev. Lett. 108 160402
[34] Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[35] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[36] Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[37] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[38] Fanchini F F, Karpat G, Çakmak B, Castelano L K, Aguilar G H, Farías O J, Walborn S P, Ribeiro P H S and de Oliveira M C 2014 Phys. Rev. Lett. 112 210402
[39] Haseli S, Karpat G, Salimi S, Khorashad A S, Fanchini F F, Çakmak B, Aguilar G H, Walborn S P and Ribeiro P H S 2014 Phys. Rev. A 90 052118
[40] Ravets S, Labuhn H, Barredo D, Béguin L, Lahaye T and Browaeys A 2014 Nat. Phys. 10 914
[41] Genkin M, Schönleber D, Wüster S and Eisfeld A 2016 J. Phys. B:At. Mol. Opt. Phys. 49 134001
[42] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
[43] Smirne A, Brivio D, Cialdi S, Vacchini B and Paris M G A 2011 Phys. Rev. A 84 032112
[44] Bernardes N K, Cuevas A, Orieux A, Monken C, Mataloni P, Sciarrino F and Santos M F 2015 Sci. Rep. 5 17520
[45] Yuan J B, Xing H J, Kuang L M and Yi S 2017 Phys. Rev. A 95 033610
[46] Zurek W H 1981 Phys. Rev. D 24 1516
[47] Zurek W H 2003 Rev. Mod. Phys. 75 715
[48] Li J G, Zou J and Shao B 2010 Phys. Rev. A 81 062124
[49] Henderson L and Vedral V 2001 J. Phys. A:Math. Gen. 34 6899
[50] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
[51] Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
[52] Breuer H P 2012 J. Phys. B:At. Mol. Opt. Phys. 45 154001
[53] Koashi M and Winter A 2004 Phys. Rev. A 69 022309
[54] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[7] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!