Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 035202    DOI: 10.1088/1674-1056/abccb0
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma

Peng-Cheng Du(杜鹏程), Fei Gao(高飞)†, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年)
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  This paper presents the evolution of the electronegativity with the applied power during the E to H mode transition in a radio frequency (rf) inductively coupled plasma (ICP) in a mixture of Ar and O2. The densities of the negative ion and the electron, as well as their ratio, i.e., the electronegativity, are measured as a function of the applied power by laser photo-detachment combined with a microwave resonance probe, under different pressures and O2 contents. Meanwhile, the optical emission intensities at Ar 750.4 nm and O 844.6 nm are monitored via a spectrograph. It was found that by increasing the applied power, the electron density and the optical emission intensity show a similar trench, i.e., they increase abruptly at a threshold power, suggesting that the E to H mode transition occurs. With the increase of the pressure, the negative ion density presents opposite trends in the E-mode and the H-mode, which is related to the difference of the electron density and energy for the two modes. The emission intensities of Ar 750.4 nm and O 844.6 nm monotonously decrease with increasing the pressure or the O2 content, indicating that the density of high-energy electrons, which can excite atoms, is monotonically decreased. This leads to an increase of the negative ion density in the H-mode with increasing the pressure. Besides, as the applied power is increased, the electronegativity shows an abrupt drop during the E-to H-mode transition.
Keywords:  electronegativity      E to H mode transition      radio frequency inductively coupled plasma  
Received:  27 July 2020      Revised:  08 October 2020      Accepted manuscript online:  23 November 2020
PACS:  52.27.Cm (Multicomponent and negative-ion plasmas)  
  52.38.-r (Laser-plasma interactions)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675039, 11875101, and 11935005) and the Fundamental Research Founds for the Central Universities, China (Grant Nos. DUT18TD06 and DUT20LAB201).
Corresponding Authors:  Corresponding author. E-mail: fgao@dlut.edu.cn   

Cite this article: 

Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年) Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma 2021 Chin. Phys. B 30 035202

1 John H K 1996 Plasma Sources Sci. Technol. 5 166
2 Yong W C and Byung T A 1999 J. Appl. Phys. 86 4004
3 Park S G, Song H Y and Beom-hoan O 2001 J. Vacuum Sci. Technol. B 19 1841
4 Wegner Th, K\"ullig C and Meichsner J 2017 Plasma Sources Sci. Technol. 26 025006
5 Wegner Th, K\"ullig C and Meichsner J 2015 Plasma Sources Sci. Technol. 24 044001
6 Wegner Th, K\"ullig C and Meichsner J 2015 Contrib. Plasma Phys. 55 728
7 Gao F, Liu W, Zhao S X, Zhang Y R, Sun C S and Wang Y N 2013 Chin. Phys. B 22 115205
8 Gao F, Zhao S X, Li X S and Wang Y N 2010 Phys. Plasmas 17 103507
9 Lee Y W, Lee H L and Chung T H 2011 J. Appl. Phys. 109 113302
10 Zeng Q X, Jin H, Meng S H, Liang W and Shu H 2019 Vacuum 164 98
11 Wegner Th, K\"ullig C and Meichsner J 2017 Plasma Sources Sci. Technol. 26 025007
12 Sirse N, Karkari S K, Mujawar M A, Conway J and Turner M M 2011 Plasma Sources Sci. Technol. 20 055003
13 Samukawa S J 1996 Appl. Phys. Lett. 68 316
14 Dodd R, You S-D, Bryant P M and Bradley J W 2010 Plasma Sources Sci. Technol. 19 015021
15 You S D, Dodd R, Edwards A and Bradley J W 2010 J. Phys. D: Appl. Phys. 43 505205
16 Lee H C, Lee J K and Chung C W 2010 Phys. Plasmas 17 033506
17 Zaka-ul-Islam M, Niemi K, Gans T and O'Connell D 2011 Appl. Phys. Lett. 99 041501
18 Corr C S, Gomez S and Graham W G 2012 Plasma Sources Sci. Technol. 21 055024
19 Gao F, Zhang Y R, Zhao S X, Li X C and Wang Y N 2014 Chin. Phys. B 23 115202
20 Gao F, Lv X Y, Zhang Y R and Wang Y N 2019 J. Appl. Phys. 126 093302
21 Xue C, Gao F, Liu Y X, Liu J and Wang Y N 2018 Chin. Phys. B 27 045202
22 Xue C, Gao F, Wen D Q and Wang Y N 2019 J. Appl. Phys. 125 023303
23 Xue C, Wen D Q, Liu W, Zhang Y R, Gao F and Wang Y N 2017 J. Vac. Sci. Technol. A 35 021301
24 Li H, Gao F, Wen D Q, Yang W, Du P C and Wang Y N 2019 J. Appl. Phys. 125 173303
25 Okada K, Komatsu S and Matsumoto S 1999 J. Vacuum Sci. Technol. A 17 721
26 Bradley J W, B\"acker H, Aranda-Gonzalvo Y, Kelly P J and Arnell R D 2002 Plasma Sources Sci. Technol. 11 165
27 Popov T K, Dimitrova M, Ivanova P, Kova\vci\vc J, Gyergyek T, Dejarnac R, St\"ockel J, Pedrosa M A, L\'opez-Bruna D and Hidalgo C 2016 Plasma Sources Sci. Technol. 25 033001
28 Park C, Pamidi S V and Graber L 2017 Mater. Sci. Eng. 278 012039
29 Liu W, Wen D Q, Zhao S X, Gao F and Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035
30 Steven S, Michael B and James W B 2013 J. Phys. D: Appl. Phys. 46 045203
31 Karkari S K, Gaman C, Ellingboe A R, Swindells I and Bradley J W 2007 Meas. Sci. Technol. 18 2649
32 Conway J, Sirse N, Karkari S K and Turner M M 2010 Plasma Sources Sci. Technol. 19 065002
33 Sirse N, Mishra A, Geun Y Y and Ellingboe A R 2016 J. Vacuum Sci. Technol. A 34 051302
34 Sirse N, Tsutsumi T, Sekine M, Hori M and Ellingboe A R 2017 J. Phys. D: Appl. Phys. 50 335205
35 Bacal M 1993 Plasma Sources Sci. Technol. 2 190
36 Liu W, Gao F, Zhao S X, Li X C and Wang Y N 2013 Phys. Plasmas 20 123513
37 Turner M M and Lieberman M A 1999 Plasma Sources Sci. Technol. 8 313
38 Xu H J, Zhao S X, Gao F, Zhang Y R, Li X C and Wang Y N 2015 Chin. Phys. B 11 115201
39 Sirse N, Oudini N, Bendib A and Ellingboe A R 2016 Plasma Sources Sci. Technol. 25 04LT01
40 Oudini N, Sirse N, Benallal R, Taccogna F, Aanesland A, Bendib A and Ellingboe A R 2015 Phys. Plasmas 22 073509
41 Kang W S, Kim H S and Hong S H 2010 Thin Solid Films 518 6578
42 Chung T H, Kang H R and Bae M K 2012 Phys. Plasmas 19 113502
43 Toneli D A, Pessoa R S, Roberto M and Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202
44 Gudmundsson J T and Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399
[1] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[2] Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1-xOx (Y=S, Se, Te) semiconductors by first-principles calculations
Wu Kong-Ping (吴孔平), Gu Shu-Lin (顾书林), Ye Jian-Dong (叶建东), Tang Kun (汤琨), Zhu Shun-Ming (朱顺明), Zhou Meng-Ran (周孟然), Huang You-Rui (黄友锐), Zhang Rong (张荣), Zheng You-Dou (郑有炓). Chin. Phys. B, 2013, 22(10): 107103.
[3] INVESTIGATION OF EMPIRICAL LAWS FOR SUPERCONDUCTIVITY OF ALLOY AND COMPOUND SUPERCONDUCTORS
Liu Long-jian (刘隆鉴), Zhang Zhuang-jian (章壮健). Chin. Phys. B, 2001, 10(9): 847-852.
No Suggested Reading articles found!