Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 098101    DOI: 10.1088/1674-1056/ab3445
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Characteristics of urea under high pressure and high temperature

Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏)
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  

The properties of urea under high pressure and high temperature (HPHT) are studied using a China-type large volume cubic high-presentation apparatus (CHPA) (SPD-6×600). The samples are characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Raman spectroscopy. By directly observing the macroscopic morphology of urea with SEM, it is confirmed that the melting point of urea rises with the increase of pressure. The XRD patterns of urea residues derived under different pressures show that the thermal stability of urea also increases with the increase of pressure. The XRD pattern of the urea residue confirms the presence of C3H5N5O (ammeline) in the residue. A new peak emerges at 21.80°, which is different from any peak of all urea pyrolysis products under normal pressure. A more pronounced peak appears at 708 cm-1 in the Raman spectrum, which is produced by C-H off-plane bending. It is determined that the urea will produce a new substance with a C-H bond under HPHT, and the assessment of this substance requires further experiments.

Keywords:  high pressure and high temperature (HPHT)      urea      thermal stability      melting point  
Received:  29 January 2019      Revised:  27 May 2019      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51772120, 11604246, 51872112, and 11804305) and the Project of Jilin Science and Technology Development Plan, China (Grant No. 20180201079GX).

Corresponding Authors:  Hong-An Ma, Xiao-Peng Jia     E-mail:  maha@jlu.edu.cn;jiaxp@jlu.edu.cn

Cite this article: 

Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏) Characteristics of urea under high pressure and high temperature 2019 Chin. Phys. B 28 098101

[1] Volz N and Clayden J 2011 Edition 50 12148
[2] Bregovic V B, Basaric N and Mlinaric-Majerski K 2015 Coord. Chem. Rev. 295 80
[3] Barhoumi A, Sunol J J and Belhouchet M 2018 J. Mol. Struct. 1173 448
[4] Madhusudan p, Ran J R, Zhang J, Yu J G and Liu G 2011 Appl. Catal. B 110 286
[5] Ding R, Qi L, Jia M J and Wang H Y 2015 Nanoscale 6 1369
[6] Lin B and Waymouth R M 2017 J. Am. Chem. Soc. 139 1649
[7] Tang R L, Li, Y, Tao Q, Li N N, Li H, Han D D, Zhu P W and Wang X 2013 Chin. Phys. B 22 066202
[8] Guo H L, Su P, Kang X F and Ning S K 2013 J. Mater. Chem. 1 2248
[9] Alzueta MU,Bilbao R, Millera A, Oliva M and Ibanez JC 2000 Energy & Fuels 14 509
[10] Guo Z X, Peng X T, Czaja D, Shun C and Kai W T 2018 Precambrian Res. 304 88
[11] Anzellini S, Dewaele A, Mezouar M, Loubeyre P and Morard G 2013 Science 340 464
[12] Zhang D Z, Jackson J M, Zhao J Y, Sturhahn W, Alp E E, Hu M Y Toellner T S, Murphy C A and Prakapenka V B 2016 Earth Planet. Sci. Lett. 447 72
[13] Hu M H, Bi N, Li S S, Su T C, Hu Q, Ma H A and Jia X P 2017 Crystengcomm 19 4571
[14] Guo L S, Ma H A, Chen L C, Chen N, Miao X Y, Wang Y, Fang S, Yang Z Q, Fang C and Jia X P 2018 Crystengcomm 20 5457
[15] Chen L C, Miao X Y, He X M, Guo L S, Fang S, Wang Y, Wang Z K, Fang C, Ma H G and Jia X P 2018 J. Cryst. Growth. 498 67
[16] Li G, Wang J, Li Y D, Chen N, Chen L C, Guo L S, Zhao L, Miao X Y, Ma H A and Jia X P 2017 Chin. Phys. B 26 068202
[17] Sun S S, Cui W, Jia X P and Ma H A 2017 Chin. Phys. B 26 098101
[18] Wang J K, Li S S, Jiang Q W, Song Y L, Yu K P, Han F, Su T C, Hu M H, Hu Q, Ma H A, Jia X P and Xiao H Y 2018 Chin. Phys. B 27 088102
[19] Lu Z Y and Li J 2015 Am. Mineral. 8-9 1892
[20] Schaber P A, Colson J, Higgins S, Thielen D, Anspach B and Brauer J 2004 Thermochim. Acta 424 131
[21] Bhuvaneswari R, Bharathi M D, Anbalagan G, Chakkaravarthi G and Murugesan K S 2018 J. Mol. Struct. 1173 188
[22] Singh H 2011 Chin. Phys. B 20 067803
[23] Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q and Zhang C L 2011 Chin. Phys. B 20 010703
[1] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[2] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[3] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[4] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[5] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[6] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[7] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[8] Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威). Chin. Phys. B, 2019, 28(5): 056402.
[9] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[10] Synthesis of thermally stable HfOxNy as gate dielectric for AlGaN/GaN heterostructure field-effect transistors
Tong Zhang(张彤), Taofei Pu(蒲涛飞), Tian Xie(谢天), Liuan Li(李柳暗), Yuyu Bu(补钰煜), Xiao Wang(王霄), Jin-Ping Ao(敖金平). Chin. Phys. B, 2018, 27(7): 078503.
[11] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[12] Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers
Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲). Chin. Phys. B, 2017, 26(8): 087305.
[13] Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution
Chu-Yu Zhong(钟础宇), Xing Zhang(张星), Di Liu(刘迪), Yong-Qiang Ning(宁永强), Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(6): 064204.
[14] High thermal stability of diamond-cBN-B4C-Si composites
Hong-Sheng Jia(贾洪声), Pin-Wen Zhu(朱品文), Hao Ye(叶灏), Bin Zuo(左斌), Yuan-Long E(鄂元龙), Shi-Chong Xu(徐仕翀), Ji Li(李季), Hai-Bo Li(李海波), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(1): 018102.
[15] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
No Suggested Reading articles found!