Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087803    DOI: 10.1088/1674-1056/28/8/087803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields

Monica Gambhir1, Vinod Prasad1,2
1 Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi 110036, India;
2 Departmento de Quimica, Universidad Autónoma Metropolitana, San Rafael Atlixco No. 186, Iztapalapa, México DF 09340, Mexico
Abstract  Multiphoton excitations and nonlinear optical properties of exciton states in GaAs/AlxGa1-xAs coupled quantum well structure have been theoretically investigated under the influence of a time-varying high-intensity terahertz (THz) laser field. Non-perturbative Floquet theory is employed to solve the time-dependent equation of motion for the laser-driven excitonic quantum well system. The response to the field parameters, such as intensity and frequency of the laser electric field on the state populations, can be used in various optical semiconductor device applications, such as photodetectors, sensors, all-optical switches, and terahertz emitters.
Keywords:  quantum well      excitons      terahertz      non-perturbative      multiphoton      laser      Floquet  
Received:  18 March 2019      Revised:  03 June 2019      Accepted manuscript online: 
PACS:  78.67.De (Quantum wells)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  71.35.-y (Excitons and related phenomena)  
Corresponding Authors:  Monica Gambhir     E-mail:  monicagdu@gmail.com

Cite this article: 

Monica Gambhir, Vinod Prasad Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields 2019 Chin. Phys. B 28 087803

[37] Szymanska M H and Littlewood P B 2003 Phys. Rev. B 67 193305
[1] Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D: Appl. Phys. 50 043001
[38] Butov L V, Zrenner A, Abstreiter G, Petinova A V and Eberl K 1995 Phys. Rev. B 52 12153
[2] Xiang D and Stupakov G 2009 Phys. Rev. Spec. Top. Accel. Beams 12 080701
[39] McIlroy P W A 1986 J. Appl. Phys. 59 3532
[3] Dunning M, Hast C, Hemsing E, Jobe K, McCormick D, Nelson J, Raubenheimer T O, Soong K, Szalata Z, Walz D, Weathersby S and Xiang D 2012 Phys. Rev. Lett. 109 074801
[40] Vela-Arevalo L V and Fox R F 2004 Phys. Rev. A 69 063409
[4] Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
[41] Gudwani M, Prasad V, Jha P K and Mohan M 2008 Int. J. Nanosci. 7 215
[5] Stojanovic N and Drescher M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 192001
[6] Ajito K 2015 IEEE Trans. Terahertz Sci. Technol. 5 1140
[7] Taslakov M, Simeonov V and van den Bergh H 2008 J. Phys.: Conf. Ser. 113 012055
[8] Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J and Tribe W A R 2003 Proc. SPIE Int. Soc. Opt. Eng. 5070 44
[9] Davies A G, Burnett A D, Fan W, Linfield E H and Cunningham J E 2008 Materials Today 11 18
[10] Sudradjat F F, Zhang W, Woodward J, Durmaz H, Moustakas T D and Paiella R 2012 Appl. Phys. Lett. 100 241113
[11] LiKamWa P, Miller A and Park C B 1990 Appl. Phys. Lett. 57 1846
[12] Maslov A V and Citrin D S 2003 J. Appl. Phys. 93 10131
[13] Yang R Q and Pei S S 1995 Superlatt. Microstruc. 17 77
[14] Liu G, Guo K, Hassanabadi H and Lu L 2012 Physica B 407 3676
[15] Gambhir M and Prasad V 2018 Revista Mexicana de F?sica 64 439
[16] Hassanabadi H, Rahimov H and Zarrinkamar S 2012 Few-Body Syst. 52 87
[17] Sargolzaeipor S, Hassanabadi H and Chung W S 2019 Mod. Phys. Lett. A 34 1950023
[18] Onyeaju M C, Idiodi J O A, Ikot A N, Solaimani M and Hassanabadi H 2017 J. Opt. 46 254
[19] Lua L, Xie W and Hassanabadi H 2011 J. Lumin. 131 2538
[20] Wagner M, Schneider H, Stehr D, Winnerl S, Andrews A M, Schartner S, Strasser G and Helm M 2010 Phys. Rev. Lett. 105 167401
[21] Galbraith I, Chari R, Pellegrini S, Phillips P J, Dent C J, van der Meer A F G, Clarke D G, Kar A K, Buller G S, Pidgeon C R, Murdin B N, Allam J and Strasser G 2005 Phys. Rev. B 71 073302
[22] Rice W D, Kono J, Zybell S, Winner S, Bhattacharyya J, Schneider H, Helm M, Ewers B, Chernikov A, Koch M, Chatterjee S, Khitrova G, Gibbs H M, Schneebeli L, Breddermann B, Kira M and Koch S W 2013 Phys. Rev. Lett. 110 137404
[23] Su M Y, Carter S G and Sherwin M S 2002 Appl. Phys. Lett. 81 1564
[24] Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum Press)
[25] Shore B W 1990 The Theory of Coherent Atomic Excitation (New York: Wiley)
[26] Shirley J H 1965 Phys. Rev. B 138 979
[27] Lumb S and Prasad V 2013 J. Mod. Phys. 4 1139
[28] Rodríguez A H, Montes L M, Giner C T and Ulloa S E 2005 Phys. Status Solidi B 242 1820
[29] Lahon S, Gambhir M, Jha P K and Mohan M 2010 Phys. Status Solidi B 247 962
[30] Duan S, Zhang W, Xie W, Ma Y and Chu W 2009 New J. Phys. 11 013037
[31] Brandes T, Aguado R and Platero G 2004 Phys. Rev. B 69 205326
[32] Johnsen K and Jauho A P 1999 Phys. Rev. Lett. 83 1207
[33] Villavicencio J, Maldonado I, Cota E and Platero G 2011 New J. Phys. 13 023032
[34] Sentef M A, Claassen M, Kemper A F, Moritz B, Oka T, Freericks J K and Devereaux T P 2015 Nat. Commun. 6 7047
[35] Giovannini U D, Hübener H and Rubio A 2016 Nano Lett. 16 7993
[36] Wilkes J and Muljarov E A 2016 New J. Phys. 18 023032
[37] Szymanska M H and Littlewood P B 2003 Phys. Rev. B 67 193305
[38] Butov L V, Zrenner A, Abstreiter G, Petinova A V and Eberl K 1995 Phys. Rev. B 52 12153
[39] McIlroy P W A 1986 J. Appl. Phys. 59 3532
[40] Vela-Arevalo L V and Fox R F 2004 Phys. Rev. A 69 063409
[41] Gudwani M, Prasad V, Jha P K and Mohan M 2008 Int. J. Nanosci. 7 215
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[7] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[8] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[9] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[10] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[11] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[12] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[13] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[14] Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection
Ya-Zheng Tao(陶雅正), Hong-Bo Jin(金洪波), and Yue-Liang Wu(吴岳良). Chin. Phys. B, 2023, 32(2): 024212.
[15] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
No Suggested Reading articles found!