CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields |
Monica Gambhir1, Vinod Prasad1,2 |
1 Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi 110036, India; 2 Departmento de Quimica, Universidad Autónoma Metropolitana, San Rafael Atlixco No. 186, Iztapalapa, México DF 09340, Mexico |
|
|
Abstract Multiphoton excitations and nonlinear optical properties of exciton states in GaAs/AlxGa1-xAs coupled quantum well structure have been theoretically investigated under the influence of a time-varying high-intensity terahertz (THz) laser field. Non-perturbative Floquet theory is employed to solve the time-dependent equation of motion for the laser-driven excitonic quantum well system. The response to the field parameters, such as intensity and frequency of the laser electric field on the state populations, can be used in various optical semiconductor device applications, such as photodetectors, sensors, all-optical switches, and terahertz emitters.
|
Received: 18 March 2019
Revised: 03 June 2019
Accepted manuscript online:
|
PACS:
|
78.67.De
|
(Quantum wells)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
71.35.-y
|
(Excitons and related phenomena)
|
|
Corresponding Authors:
Monica Gambhir
E-mail: monicagdu@gmail.com
|
Cite this article:
Monica Gambhir, Vinod Prasad Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields 2019 Chin. Phys. B 28 087803
|
[37] |
Szymanska M H and Littlewood P B 2003 Phys. Rev. B 67 193305
|
[1] |
Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D: Appl. Phys. 50 043001
|
[38] |
Butov L V, Zrenner A, Abstreiter G, Petinova A V and Eberl K 1995 Phys. Rev. B 52 12153
|
[2] |
Xiang D and Stupakov G 2009 Phys. Rev. Spec. Top. Accel. Beams 12 080701
|
[39] |
McIlroy P W A 1986 J. Appl. Phys. 59 3532
|
[3] |
Dunning M, Hast C, Hemsing E, Jobe K, McCormick D, Nelson J, Raubenheimer T O, Soong K, Szalata Z, Walz D, Weathersby S and Xiang D 2012 Phys. Rev. Lett. 109 074801
|
[40] |
Vela-Arevalo L V and Fox R F 2004 Phys. Rev. A 69 063409
|
[4] |
Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
|
[41] |
Gudwani M, Prasad V, Jha P K and Mohan M 2008 Int. J. Nanosci. 7 215
|
[5] |
Stojanovic N and Drescher M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 192001
|
[6] |
Ajito K 2015 IEEE Trans. Terahertz Sci. Technol. 5 1140
|
[7] |
Taslakov M, Simeonov V and van den Bergh H 2008 J. Phys.: Conf. Ser. 113 012055
|
[8] |
Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J and Tribe W A R 2003 Proc. SPIE Int. Soc. Opt. Eng. 5070 44
|
[9] |
Davies A G, Burnett A D, Fan W, Linfield E H and Cunningham J E 2008 Materials Today 11 18
|
[10] |
Sudradjat F F, Zhang W, Woodward J, Durmaz H, Moustakas T D and Paiella R 2012 Appl. Phys. Lett. 100 241113
|
[11] |
LiKamWa P, Miller A and Park C B 1990 Appl. Phys. Lett. 57 1846
|
[12] |
Maslov A V and Citrin D S 2003 J. Appl. Phys. 93 10131
|
[13] |
Yang R Q and Pei S S 1995 Superlatt. Microstruc. 17 77
|
[14] |
Liu G, Guo K, Hassanabadi H and Lu L 2012 Physica B 407 3676
|
[15] |
Gambhir M and Prasad V 2018 Revista Mexicana de F?sica 64 439
|
[16] |
Hassanabadi H, Rahimov H and Zarrinkamar S 2012 Few-Body Syst. 52 87
|
[17] |
Sargolzaeipor S, Hassanabadi H and Chung W S 2019 Mod. Phys. Lett. A 34 1950023
|
[18] |
Onyeaju M C, Idiodi J O A, Ikot A N, Solaimani M and Hassanabadi H 2017 J. Opt. 46 254
|
[19] |
Lua L, Xie W and Hassanabadi H 2011 J. Lumin. 131 2538
|
[20] |
Wagner M, Schneider H, Stehr D, Winnerl S, Andrews A M, Schartner S, Strasser G and Helm M 2010 Phys. Rev. Lett. 105 167401
|
[21] |
Galbraith I, Chari R, Pellegrini S, Phillips P J, Dent C J, van der Meer A F G, Clarke D G, Kar A K, Buller G S, Pidgeon C R, Murdin B N, Allam J and Strasser G 2005 Phys. Rev. B 71 073302
|
[22] |
Rice W D, Kono J, Zybell S, Winner S, Bhattacharyya J, Schneider H, Helm M, Ewers B, Chernikov A, Koch M, Chatterjee S, Khitrova G, Gibbs H M, Schneebeli L, Breddermann B, Kira M and Koch S W 2013 Phys. Rev. Lett. 110 137404
|
[23] |
Su M Y, Carter S G and Sherwin M S 2002 Appl. Phys. Lett. 81 1564
|
[24] |
Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum Press)
|
[25] |
Shore B W 1990 The Theory of Coherent Atomic Excitation (New York: Wiley)
|
[26] |
Shirley J H 1965 Phys. Rev. B 138 979
|
[27] |
Lumb S and Prasad V 2013 J. Mod. Phys. 4 1139
|
[28] |
Rodríguez A H, Montes L M, Giner C T and Ulloa S E 2005 Phys. Status Solidi B 242 1820
|
[29] |
Lahon S, Gambhir M, Jha P K and Mohan M 2010 Phys. Status Solidi B 247 962
|
[30] |
Duan S, Zhang W, Xie W, Ma Y and Chu W 2009 New J. Phys. 11 013037
|
[31] |
Brandes T, Aguado R and Platero G 2004 Phys. Rev. B 69 205326
|
[32] |
Johnsen K and Jauho A P 1999 Phys. Rev. Lett. 83 1207
|
[33] |
Villavicencio J, Maldonado I, Cota E and Platero G 2011 New J. Phys. 13 023032
|
[34] |
Sentef M A, Claassen M, Kemper A F, Moritz B, Oka T, Freericks J K and Devereaux T P 2015 Nat. Commun. 6 7047
|
[35] |
Giovannini U D, Hübener H and Rubio A 2016 Nano Lett. 16 7993
|
[36] |
Wilkes J and Muljarov E A 2016 New J. Phys. 18 023032
|
[37] |
Szymanska M H and Littlewood P B 2003 Phys. Rev. B 67 193305
|
[38] |
Butov L V, Zrenner A, Abstreiter G, Petinova A V and Eberl K 1995 Phys. Rev. B 52 12153
|
[39] |
McIlroy P W A 1986 J. Appl. Phys. 59 3532
|
[40] |
Vela-Arevalo L V and Fox R F 2004 Phys. Rev. A 69 063409
|
[41] |
Gudwani M, Prasad V, Jha P K and Mohan M 2008 Int. J. Nanosci. 7 215
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|