CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of strain on exciton dynamics in monolayer WS2 |
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生) |
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract The exciton dynamics in a WS2 monolayer with strain are studied by transient absorption measurements. We measure the differential transmission signal from monolayer WS2 as a function of the probe wavelength at different levels of strain applied to the sample. The differential transmission spectrum has a positive maximum value at about 614 nm and shows no significant strain dependence. By time-resolving the differential transmission signal, we find that the strain has a minimal effect on the exciton formation process. However, the exciton lifetime is significantly reduced by strain. These results provide useful information for applications of WS2 in flexible electronic and optoelectronic devices where strain is inevitable.
|
Received: 08 April 2019
Revised: 19 May 2019
Accepted manuscript online:
|
PACS:
|
72.80.Ga
|
(Transition-metal compounds)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.47.jb
|
(Transient absorption)
|
|
78.47.jg
|
(Time resolved reflection spectroscopy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817 and 61875236), the Initiative Postdocs Supporting Program of China (Grant No. BX201600013), the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017M610756), the Overseas Expertise Introduction Center for Discipline Innovation, China, and the 111 Center of China. |
Corresponding Authors:
Jia-Qi He, Yong-Sheng Wang
E-mail: jqhe@bjtu.edu.cn;yshwang@bjtu.edu.cn
|
Cite this article:
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生) Effect of strain on exciton dynamics in monolayer WS2 2019 Chin. Phys. B 28 087201
|
[39] |
He J Q, He D W, Wang Y S, Cui Q N, Ceballos F and Zhao H 2015 Nanoscale 7 9526
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[40] |
Cui Q, He J, Bellus M Z, Mirzokarimov M, Hofmann T, Chiu H Y, Antonik M, He D, Wang Y and Zhao H 2015 Small 11 5565
|
[2] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[41] |
Cui Q N, Ceballos F, Kumar N and Zhao H 2014 ACS Nano 8 2970
|
[42] |
Kumar N, Cui Q N, Ceballos F, He D W, Wang Y S and Zhao H 2014 Phys. Rev. B 89 125427
|
[3] |
Tian H, Tan Z, Wu C, Wang X, Mohammad M A, Xie D, Yang Y, Wang J, Li L J, Xu J and Ren T L 2014 Sci. Rep. 4 5951
|
[43] |
Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Nanoscale 6 4915
|
[4] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[44] |
Isl, J O, Kuc A, Diependaal E H, Bratschitsch R, van der Zant H S, Heine T and Castellanos-Gomez A 2016 Nanoscale 8 2589
|
[5] |
Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
|
[45] |
Schmidt R, Niehues I, Schneider R, Drüppel M, Deilmann T, Rohlfing M, de Vasconcellos S M, Castellanos-Gomez A and Bratschitsch R 2016 2D Materials 3 021011
|
[6] |
Kozawa D, Kumar R, Carvalho A, Kumar Amara K, Zhao W, Wang S, Toh M, Ribeiro R M, Castro Neto A H, Matsuda K and Eda G 2014 Nat. Commun. 5 4543
|
[46] |
Cui Q, Muniz R A, Sipe J E and Zhao H 2017 Phys. Rev. B 95 165406
|
[7] |
Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
|
[47] |
Zhao W J, Ribeiro R M, Toh M L, Carvalho A, Kloc C, Neto A H C and Eda G 2013 Nano Lett. 13 5627
|
[8] |
Ataca C, Sahin H and Ciraci S 2012 J. Phys. Chem. C 116 8983
|
[48] |
Peimyoo N, Shang J Z, Cong C X, Shen X N, Wu X Y, Yeow E K L and Yu T 2013 ACS Nano 7 10985
|
[9] |
Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
|
[49] |
He J, Kumar N, Bellus M Z, Chiu H Y, He D, Wang Y and Zhao H 2014 Nat. Commun. 5 5622
|
[10] |
Baugher B W H, Churchill H O H, Yang Y and Jarillo-Herrero P 2014 Nat. Nano 9 262
|
[50] |
Pan S, Ceballos F, Bellus M Z, Zereshki P and Zhao H 2016 2D Materials 4 015033
|
[11] |
Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H C, Wu H, Huang Y and Duan X 2014 Nat. Commun. 5 5143
|
[51] |
Ceballos F, Cui Q, Bellus M Z and Zhao H 2016 Nanoscale 8 11681
|
[12] |
Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
|
[52] |
Ceballos F and Zhao H 2017 Adv. Funct. Mater. 27 1604509
|
[13] |
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
|
[14] |
Cui S M, Pu H H, Wells S A, Wen Z H, Mao S, Chang J B, Hersam M C and Chen J H 2015 Nat. Commun. 6 8632
|
[15] |
Tsai M L, Su S H, Chang J K, Tsai D S, Chen C H, Wu C I, Li L J, Chen L J and He J H 2014 ACS Nano 8 8317
|
[16] |
Yun J M, Noh Y J, Lee C H, Na S I, Lee S, Jo S M, Joh H I and Kim D Y 2014 Small 10 2319
|
[17] |
Gourmelon E, Lignier O, Hadouda H, Couturier G, Bernede J C, Tedd J, Pouzet J and Salardenne J 1997 Sol. Energy Mater. Sol. Cells 46 115
|
[18] |
Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H and Terrones M 2013 Nano Lett. 13 3447
|
[19] |
Braga D, Lezama I G, Berger H and Morpurgo A F 2012 Nano Lett. 12 5218
|
[20] |
Elias A L, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R T, Feng S M, Long A D, Hayashi T, Kim Y A, Endo M, Gutierrez H R, Pradhan N R, Balicas L, Houk T E M, Lopez-Urias F, Terrones H and Terrones M 2013 ACS Nano 7 5235
|
[21] |
Liu L, Kumar S B, Ouyang Y and Guo J 2011 IEEE Trans. Electron. Dev. 58 3042
|
[22] |
Weijie Z, Zohreh G, Leiqiang C, Minglin T, Christian K, Ping-Heng T and Goki E 2013 ACS Nano 7 791
|
[23] |
Sang Y H, Zhao Z H, Zhao M W, Hao P, Leng Y H and Liu H 2015 Adv. Mater. 27 363
|
[24] |
Perea-Lopez N, Elias A L, Berkdemir A, Castro-Beltran A, Gutierrez H R, Feng S M, Lv R T, Hayashi T, Lopez-Urias F, Ghosh S, Muchharla B, Talapatra S, Terrones H and Terrones M 2013 Adv. Funct. Mater. 23 5511
|
[25] |
Shanmugam M, Bansal T, Durcan C A and Yu B 2012 Appl. Phys. Lett. 101 263902
|
[26] |
Cui Y, Xin R, Yu Z H, Pan Y M, Ong Z Y, Wei X X, Wang J Z, Nan H Y, Ni Z H, Wu Y, Chen T S, Shi Y, Wang B G, Zhang G, Zhang Y W and Wang X R 2015 Adv. Mater. 27 5230
|
[27] |
Lan C Y, Li C, Yin Y and Liu Y 2015 Nanoscale 7 5974
|
[28] |
Wang Y L, Cong C X, Yang W H, Shang J Z, Peimyoo N, Chen Y, Kang J Y, Wang J P, Huang W and Yu T 2015 Nano Res. 8 2562
|
[29] |
Zhang Q, Chang Z, Xu G, Wang Z, Zhang Y, Xu Z Q, Chen S, Bao Q, Liu J Z and Mai Y W 2016 Adv. Funct. Mater. 26 8707
|
[30] |
Kou L, Du A, Chen C and Frauenheim T 2014 Nanoscale 6 5156
|
[31] |
Yu S, Zhu H, Eshun K, Shi C, Zeng M and Li Q 2016 Appl. Phys. Lett. 108 191901
|
[32] |
Li M, Dai J and Zeng X C 2015 Nanoscale 7 15385
|
[33] |
Guzman D M and Strachan A 2014 J. Appl. Phys. 115 243701
|
[34] |
Maniadaki A E, Kopidakis G and Remediakis I N 2016 Solid State Commun. 227 33
|
[35] |
He X, Li H, Zhu Z, Dai Z, Yang Y, Yang P, Zhang Q, Li P, Schwingenschlogl U and Zhang X 2016 Appl. Phys. Lett. 109 173105
|
[36] |
Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
|
[37] |
Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J and Watanabe K 2013 ACS Nano 7 7931
|
[38] |
Shen T, Penumatcha A V and Appenzeller J 2016 ACS Nano 10 4712
|
[39] |
He J Q, He D W, Wang Y S, Cui Q N, Ceballos F and Zhao H 2015 Nanoscale 7 9526
|
[40] |
Cui Q, He J, Bellus M Z, Mirzokarimov M, Hofmann T, Chiu H Y, Antonik M, He D, Wang Y and Zhao H 2015 Small 11 5565
|
[41] |
Cui Q N, Ceballos F, Kumar N and Zhao H 2014 ACS Nano 8 2970
|
[42] |
Kumar N, Cui Q N, Ceballos F, He D W, Wang Y S and Zhao H 2014 Phys. Rev. B 89 125427
|
[43] |
Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Nanoscale 6 4915
|
[44] |
Isl, J O, Kuc A, Diependaal E H, Bratschitsch R, van der Zant H S, Heine T and Castellanos-Gomez A 2016 Nanoscale 8 2589
|
[45] |
Schmidt R, Niehues I, Schneider R, Drüppel M, Deilmann T, Rohlfing M, de Vasconcellos S M, Castellanos-Gomez A and Bratschitsch R 2016 2D Materials 3 021011
|
[46] |
Cui Q, Muniz R A, Sipe J E and Zhao H 2017 Phys. Rev. B 95 165406
|
[47] |
Zhao W J, Ribeiro R M, Toh M L, Carvalho A, Kloc C, Neto A H C and Eda G 2013 Nano Lett. 13 5627
|
[48] |
Peimyoo N, Shang J Z, Cong C X, Shen X N, Wu X Y, Yeow E K L and Yu T 2013 ACS Nano 7 10985
|
[49] |
He J, Kumar N, Bellus M Z, Chiu H Y, He D, Wang Y and Zhao H 2014 Nat. Commun. 5 5622
|
[50] |
Pan S, Ceballos F, Bellus M Z, Zereshki P and Zhao H 2016 2D Materials 4 015033
|
[51] |
Ceballos F, Cui Q, Bellus M Z and Zhao H 2016 Nanoscale 8 11681
|
[52] |
Ceballos F and Zhao H 2017 Adv. Funct. Mater. 27 1604509
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|