Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087201    DOI: 10.1088/1674-1056/28/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of strain on exciton dynamics in monolayer WS2

Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生)
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  The exciton dynamics in a WS2 monolayer with strain are studied by transient absorption measurements. We measure the differential transmission signal from monolayer WS2 as a function of the probe wavelength at different levels of strain applied to the sample. The differential transmission spectrum has a positive maximum value at about 614 nm and shows no significant strain dependence. By time-resolving the differential transmission signal, we find that the strain has a minimal effect on the exciton formation process. However, the exciton lifetime is significantly reduced by strain. These results provide useful information for applications of WS2 in flexible electronic and optoelectronic devices where strain is inevitable.
Keywords:  transient absorption      transition metal dichalcogenides      excitons      strain  
Received:  08 April 2019      Revised:  19 May 2019      Accepted manuscript online: 
PACS:  72.80.Ga (Transition-metal compounds)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.47.jb (Transient absorption)  
  78.47.jg (Time resolved reflection spectroscopy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817 and 61875236), the Initiative Postdocs Supporting Program of China (Grant No. BX201600013), the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017M610756), the Overseas Expertise Introduction Center for Discipline Innovation, China, and the 111 Center of China.
Corresponding Authors:  Jia-Qi He, Yong-Sheng Wang     E-mail:  jqhe@bjtu.edu.cn;yshwang@bjtu.edu.cn

Cite this article: 

Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生) Effect of strain on exciton dynamics in monolayer WS2 2019 Chin. Phys. B 28 087201

[39] He J Q, He D W, Wang Y S, Cui Q N, Ceballos F and Zhao H 2015 Nanoscale 7 9526
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[40] Cui Q, He J, Bellus M Z, Mirzokarimov M, Hofmann T, Chiu H Y, Antonik M, He D, Wang Y and Zhao H 2015 Small 11 5565
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[41] Cui Q N, Ceballos F, Kumar N and Zhao H 2014 ACS Nano 8 2970
[42] Kumar N, Cui Q N, Ceballos F, He D W, Wang Y S and Zhao H 2014 Phys. Rev. B 89 125427
[3] Tian H, Tan Z, Wu C, Wang X, Mohammad M A, Xie D, Yang Y, Wang J, Li L J, Xu J and Ren T L 2014 Sci. Rep. 4 5951
[43] Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Nanoscale 6 4915
[4] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[44] Isl, J O, Kuc A, Diependaal E H, Bratschitsch R, van der Zant H S, Heine T and Castellanos-Gomez A 2016 Nanoscale 8 2589
[5] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
[45] Schmidt R, Niehues I, Schneider R, Drüppel M, Deilmann T, Rohlfing M, de Vasconcellos S M, Castellanos-Gomez A and Bratschitsch R 2016 2D Materials 3 021011
[6] Kozawa D, Kumar R, Carvalho A, Kumar Amara K, Zhao W, Wang S, Toh M, Ribeiro R M, Castro Neto A H, Matsuda K and Eda G 2014 Nat. Commun. 5 4543
[46] Cui Q, Muniz R A, Sipe J E and Zhao H 2017 Phys. Rev. B 95 165406
[7] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[47] Zhao W J, Ribeiro R M, Toh M L, Carvalho A, Kloc C, Neto A H C and Eda G 2013 Nano Lett. 13 5627
[8] Ataca C, Sahin H and Ciraci S 2012 J. Phys. Chem. C 116 8983
[48] Peimyoo N, Shang J Z, Cong C X, Shen X N, Wu X Y, Yeow E K L and Yu T 2013 ACS Nano 7 10985
[9] Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
[49] He J, Kumar N, Bellus M Z, Chiu H Y, He D, Wang Y and Zhao H 2014 Nat. Commun. 5 5622
[10] Baugher B W H, Churchill H O H, Yang Y and Jarillo-Herrero P 2014 Nat. Nano 9 262
[50] Pan S, Ceballos F, Bellus M Z, Zereshki P and Zhao H 2016 2D Materials 4 015033
[11] Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H C, Wu H, Huang Y and Duan X 2014 Nat. Commun. 5 5143
[51] Ceballos F, Cui Q, Bellus M Z and Zhao H 2016 Nanoscale 8 11681
[12] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
[52] Ceballos F and Zhao H 2017 Adv. Funct. Mater. 27 1604509
[13] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[14] Cui S M, Pu H H, Wells S A, Wen Z H, Mao S, Chang J B, Hersam M C and Chen J H 2015 Nat. Commun. 6 8632
[15] Tsai M L, Su S H, Chang J K, Tsai D S, Chen C H, Wu C I, Li L J, Chen L J and He J H 2014 ACS Nano 8 8317
[16] Yun J M, Noh Y J, Lee C H, Na S I, Lee S, Jo S M, Joh H I and Kim D Y 2014 Small 10 2319
[17] Gourmelon E, Lignier O, Hadouda H, Couturier G, Bernede J C, Tedd J, Pouzet J and Salardenne J 1997 Sol. Energy Mater. Sol. Cells 46 115
[18] Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H and Terrones M 2013 Nano Lett. 13 3447
[19] Braga D, Lezama I G, Berger H and Morpurgo A F 2012 Nano Lett. 12 5218
[20] Elias A L, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R T, Feng S M, Long A D, Hayashi T, Kim Y A, Endo M, Gutierrez H R, Pradhan N R, Balicas L, Houk T E M, Lopez-Urias F, Terrones H and Terrones M 2013 ACS Nano 7 5235
[21] Liu L, Kumar S B, Ouyang Y and Guo J 2011 IEEE Trans. Electron. Dev. 58 3042
[22] Weijie Z, Zohreh G, Leiqiang C, Minglin T, Christian K, Ping-Heng T and Goki E 2013 ACS Nano 7 791
[23] Sang Y H, Zhao Z H, Zhao M W, Hao P, Leng Y H and Liu H 2015 Adv. Mater. 27 363
[24] Perea-Lopez N, Elias A L, Berkdemir A, Castro-Beltran A, Gutierrez H R, Feng S M, Lv R T, Hayashi T, Lopez-Urias F, Ghosh S, Muchharla B, Talapatra S, Terrones H and Terrones M 2013 Adv. Funct. Mater. 23 5511
[25] Shanmugam M, Bansal T, Durcan C A and Yu B 2012 Appl. Phys. Lett. 101 263902
[26] Cui Y, Xin R, Yu Z H, Pan Y M, Ong Z Y, Wei X X, Wang J Z, Nan H Y, Ni Z H, Wu Y, Chen T S, Shi Y, Wang B G, Zhang G, Zhang Y W and Wang X R 2015 Adv. Mater. 27 5230
[27] Lan C Y, Li C, Yin Y and Liu Y 2015 Nanoscale 7 5974
[28] Wang Y L, Cong C X, Yang W H, Shang J Z, Peimyoo N, Chen Y, Kang J Y, Wang J P, Huang W and Yu T 2015 Nano Res. 8 2562
[29] Zhang Q, Chang Z, Xu G, Wang Z, Zhang Y, Xu Z Q, Chen S, Bao Q, Liu J Z and Mai Y W 2016 Adv. Funct. Mater. 26 8707
[30] Kou L, Du A, Chen C and Frauenheim T 2014 Nanoscale 6 5156
[31] Yu S, Zhu H, Eshun K, Shi C, Zeng M and Li Q 2016 Appl. Phys. Lett. 108 191901
[32] Li M, Dai J and Zeng X C 2015 Nanoscale 7 15385
[33] Guzman D M and Strachan A 2014 J. Appl. Phys. 115 243701
[34] Maniadaki A E, Kopidakis G and Remediakis I N 2016 Solid State Commun. 227 33
[35] He X, Li H, Zhu Z, Dai Z, Yang Y, Yang P, Zhang Q, Li P, Schwingenschlogl U and Zhang X 2016 Appl. Phys. Lett. 109 173105
[36] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
[37] Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J and Watanabe K 2013 ACS Nano 7 7931
[38] Shen T, Penumatcha A V and Appenzeller J 2016 ACS Nano 10 4712
[39] He J Q, He D W, Wang Y S, Cui Q N, Ceballos F and Zhao H 2015 Nanoscale 7 9526
[40] Cui Q, He J, Bellus M Z, Mirzokarimov M, Hofmann T, Chiu H Y, Antonik M, He D, Wang Y and Zhao H 2015 Small 11 5565
[41] Cui Q N, Ceballos F, Kumar N and Zhao H 2014 ACS Nano 8 2970
[42] Kumar N, Cui Q N, Ceballos F, He D W, Wang Y S and Zhao H 2014 Phys. Rev. B 89 125427
[43] Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Nanoscale 6 4915
[44] Isl, J O, Kuc A, Diependaal E H, Bratschitsch R, van der Zant H S, Heine T and Castellanos-Gomez A 2016 Nanoscale 8 2589
[45] Schmidt R, Niehues I, Schneider R, Drüppel M, Deilmann T, Rohlfing M, de Vasconcellos S M, Castellanos-Gomez A and Bratschitsch R 2016 2D Materials 3 021011
[46] Cui Q, Muniz R A, Sipe J E and Zhao H 2017 Phys. Rev. B 95 165406
[47] Zhao W J, Ribeiro R M, Toh M L, Carvalho A, Kloc C, Neto A H C and Eda G 2013 Nano Lett. 13 5627
[48] Peimyoo N, Shang J Z, Cong C X, Shen X N, Wu X Y, Yeow E K L and Yu T 2013 ACS Nano 7 10985
[49] He J, Kumar N, Bellus M Z, Chiu H Y, He D, Wang Y and Zhao H 2014 Nat. Commun. 5 5622
[50] Pan S, Ceballos F, Bellus M Z, Zereshki P and Zhao H 2016 2D Materials 4 015033
[51] Ceballos F, Cui Q, Bellus M Z and Zhao H 2016 Nanoscale 8 11681
[52] Ceballos F and Zhao H 2017 Adv. Funct. Mater. 27 1604509
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[7] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[10] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[11] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[12] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[13] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[14] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[15] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
No Suggested Reading articles found!