Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 085202    DOI: 10.1088/1674-1056/28/8/085202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Damage characteristics of laser plasma shock wave on rear surface of fused silica glass

Xiong Shen(沈雄)1, Guo-Ying Feng(冯国英)1, Sheng Jing(景晟)2, Jing-Hua Han(韩敬华)1, Ya-Guo Li(李亚国)3, Kai Liu(刘锴)1
1 College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China;
2 Sichuan Earthquake Administration, Chengdu 610041, China;
3 Fine Optical Engineering Research Center, Chengdu 610041, China
Abstract  The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface, which hinders the improvement in the energy of the high power laser device. For optical components, the ionization breakdown by laser is a main factor causing damage, particularly with laser plasma shock waves, which can cause large-scale fracture damage in fused silica. In this study, the damage morphology is experimentally investigated, and the characteristics of the damage point are obtained. In the theoretical study, the coupling and transmission of the shock wave in glass are investigated based on the finite element method. Thus, both the magnitude and the orientation of stress are obtained. The damage mechanism of the glass can be explained based on the fracture characteristics of glass under different stresses and also on the variation of the damage zone's Raman spectrum. In addition, the influence of the glass thickness on the damage morphology is investigated. The results obtained in this study can be used as a reference in understanding the characteristics and mechanism of damage characteristics induced by laser plasma shock waves.
Keywords:  rear surface of fused silica      laser-induced plasma      Raman spectroscopy      different thickness      finite element method  
Received:  22 April 2019      Revised:  09 June 2019      Accepted manuscript online: 
PACS:  52.50.Lp (Plasma production and heating by shock waves and compression)  
  78.30.-j (Infrared and Raman spectra)  
  42.70.-a (Optical materials)  
Fund: Project supported by the Key Research and Development Projects of Science and Technology Department of Sichuan Province, China (Grant No. 2018FZ0032) and the National Natural Science Foundation of China (Grant No. U1730141).
Corresponding Authors:  Jing-Hua Han     E-mail:  hanjinghua@scu.edu.cn

Cite this article: 

Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴) Damage characteristics of laser plasma shock wave on rear surface of fused silica glass 2019 Chin. Phys. B 28 085202

[1] Liao Z M, Nostrand M, Carr W, Bude J and Suratwala T I 2016 Pacific Rim Laser Damage 2016: Optical Materials for High Power Lasers, 22 July, 2016, Yokohama, Japan, p. 998304
[2] Jensen L O and Ristau D 2015 Spie Optical Systems Design, 24 September, 2015, Jena, Germany, p. 96280G
[3] Zhu J Q, Sun M Y, Liu C, Guo Y J, Yang L, Yang P Q, Zhang Y L, Wang B Y, Liu C, Li Y S, Ren Z Y, Liu D, Liu Z G, Jiao Z Y, Ren L, Zhang G W, Fan Q T, Feng T and Lin Z Q 2018 Solid State Lasers Xxvii: Technology & Devices, San Francisco, California, USA, p. 105110Y
[4] Shao Z F, Wang Y F, Xiang Z K and Rao C D 2016 Research Progress of Large-aperture Fused Silica for High Power Laser, November 2016, Suzhou, China, p. 102551D
[5] Huang W Q, Han W, Wang F, Xiang Y, Li F Q, Feng B, Jing F, Wei X F, Zheng W G and Zhang X M 2009 Chin. Phys. Lett. 26 017901
[6] Elfallagh F and Inkson B J 2009 J. Eur. Ceram. Soc. 29 47
[7] Yao P, Wang W, Huang C Z, Wang J, Zhu H T and Kuriyagawa T 2013 Adv. Mater. Res. 797 667
[8] Carr C W, Radousky H B, Rubenchik A M, Feit M D and Demos S G 2004 Phys. Rev. Lett. 92 087401
[9] Cai C, Zhu H, Huang J, Lv L, Ma P and He X 2016 Appl. Opt. 55 2252
[10] Lou Z K, Han K, Song R, Yan B Z and Liu Z J 2017 Laser Technology for Defense & Security XⅢ, 1 May, 2017, California, USA, p. 101920O
[11] Kubota A, Caturla M J, Stolken J and Feit M 2001 Opt. Express 8 611
[12] Negres R A, Feit M D and Demos S G 2010 Opt. Express 18 10642
[13] Demos S G, Negres R A, Raman R N, Rubenchik A M and Feit M D 2009 Laser-induced Damage in Optical Materials, 31 December, 2009, Colorado, USA, p. 750418
[14] Wong J, Ferriera J L, Lindsey E F, Haupt D L, Hutcheon I D and Kinney J H 2006 J. Non-Cryst. Solids 352 255
[15] Hu G H, Zhao Y A, Wei D and Ling Q 2012 Chin. Phys. Lett. 29 037801
[16] Demange P, Negres R A, Raman R N, Colvin J D and Demos S G 2011 Phys. Rev. B 84 054118
[17] Raman R N, Demos S G, Shen N, Feigenbaum E, Negres R A, Elhadj S, Rubenchik A M and Matthews M J 2016 Opt. Express 24 2634
[18] Yang L, Xiang X, Miao X X, Li Z J, Li L, Yuan X D, Zhou G R, Lv H B and Zu X T 2015 Opt. Laser Technol. 75 76
[19] Ming C, Jiang Y, Luo C S, Shi X Y, Ren W, Xiang X, Wang H J, He S B, Yuan X D and Lv H B 2012 Chin. Phys. Lett. 29 044211
[20] Han J H, Li Y G, He C T, Zhang Q H, Niu R H, Yang L M and Feng G Y 2012 Opt. Eng. 51 1809
[21] Hu R F, Han J H, Feng G Y, Wang Z P, Wei H, Zhao J P and Gu Q Q 2017 Optik-Int. J. For Light Electron. Opt. 140 427
[22] Penner S S 2002 J. Quant. Spectrosc. Radiat. Transfer 76 235
[23] Bourne N, Rosenberg, Mebar Y, Obara T and Field J 1994 J. Physique IV Colloque 4(C8) 635
[24] Demos S, Staggs M, Minoshima K and Fujimoto J 2002 Opt. Express 10 1444
[25] Liu H J, Zhou X D, Huang J, Wang F X, Jiang X D, Huang J, Wu W D and Zheng W G 2011 Acta Phys. Sin. 60 065202 (in Chinese)
[26] Peyre P and Fabbro R 1995 Opt. Quantum Electron. 27 1213
[27] Gabi B D 2007 Shock Wave Reflection Phenomena, 2nd edn. (Berlin: Springer) p. 342
[28] Wang Z P, Feng G Y, Han J H, Wang S T, Hu R F, Li G, Dai S Y, Zhou S Y 2016 Opt. Eng. 55 105101
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[3] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[4] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[7] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[8] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[9] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[10] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[11] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[12] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[13] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[14] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[15] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
No Suggested Reading articles found!