Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 085201    DOI: 10.1088/1674-1056/28/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO

Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军)
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Abstract  A novel transit-time oscillator (TTO) is proposed in this paper. An axial cathode which has been widely used in high power microwave (HPM) source and an extractor with radial feature are adopted. In this way, the inherent advantages of axial and radial TTO, both of which can be utilized as high-quality intense relativistic electron beam (IREB), can be generated and the power capacity is also increased. The working mode is π/2 mode of TM01 based on small-signal theory, and under the same energy storage, the maximum electric field in extractor decreases 16.3%. Besides, by utilizing the natural bending of the solenoid, this TTO saves over 60% of the length required by the uniform magnetic field, and consequently reduces the energy consumed by solenoid. The PIC simulation shows that by using 1.0-T decreasing magnetic field generated by the shorter solenoid, 3.37-GW microwave at 12.43 GHz is generated with 620-kV and 13.27-kA input, and the overall conversion efficiency is 41%.
Keywords:  axial TTO      radial-feature extractor      larger power capacity      shorter uniform magnetic field  
Received:  02 April 2019      Revised:  21 May 2019      Accepted manuscript online: 
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61701516).
Corresponding Authors:  Jun-Tao He     E-mail:  hejuntao12@163.com

Cite this article: 

Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军) Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO 2019 Chin. Phys. B 28 085201

[1] Song L, He J and Ling J 2015 Phys. Plasmas 22 518
[2] Zhang J, Ge X, Zhang J, He J, Fan Y, Li Z, Jin Z, Gao L, Ling J and Qi Z 2016 Matter Radiat. Extrem. 1 163
[3] Ling J, He J, Zhang J and Song L 2017 Phys. Plasmas 24 013103
[4] Ling J, He J, Zhang J, Jiang T and Wang L 2014 Phys. Plasmas 21 103108
[5] Yang F, Zhang X and Bai Z 2018 Phys. Plasmas 25 033101
[6] Dang F, Zhang X, Zhong H, Li Y and Qi Z 2014 Phys. Plasmas 21 063307
[7] Zhu J, Zhang X and Dang F 2016 Plasmas 23 073111
[8] Dang F, Zhang X, Zhong H and Li Y 2015 Phys. Plasmas 22 093301
[9] He J, Cao Y, Zhang J and Ling J 2013 IEEE Trans. Plasma Sci. 41 847
[1] The intermittent excitation of geodesic acoustic mode by resonant Instanton of electron drift wave envelope in L-mode discharge near tokamak edge
Zhao-Yang Liu(刘朝阳), Yang-Zhong Zhang(章扬忠), Swadesh Mitter Mahajan, A-Di Liu(刘阿娣), Chu Zhou(周楚), and Tao Xie(谢涛). Chin. Phys. B, 2022, 31(4): 045202.
[2] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[3] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[4] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[5] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[6] On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas
M Shahmansouri, N Khodabakhshi. Chin. Phys. B, 2018, 27(10): 105206.
[7] Nonlinear ion-acoustic solitary waves in an electron-positron-ion plasma with relativistic positron beam
Ridip Sarma, Amar P Misra, Nirab C Adhikary. Chin. Phys. B, 2018, 27(10): 105207.
[8] Observation of double pseudowaves in an ion-beam-plasma system
Zi-An Wei(卫子安), Jin-Xiu Ma(马锦秀), Kai-Yang Yi(弋开阳). Chin. Phys. B, 2018, 27(8): 085201.
[9] Upstream ion wave excitation in an ion-beam-plasma system
Kai-Yang Yi(弋开阳), Jin-Xiu Ma(马锦秀), Zi-An Wei(卫子安), Zheng-Yuan Li(李政元). Chin. Phys. B, 2018, 27(5): 055201.
[10] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[11] Schamel equation in an inhomogeneous magnetized sheared flow plasma with q-nonextensive trapped electrons
Shaukat Ali Shan, Qamar-ul-Haque. Chin. Phys. B, 2018, 27(2): 025203.
[12] Interactions of ion acoustic multi-soliton and rogue wave with Bohm quantum potential in degenerate plasma
M S Alam, M G Hafez, M R Talukder, M Hossain Ali. Chin. Phys. B, 2017, 26(9): 095203.
[13] Drift vortices in inhomogeneous collisional dusty magnetoplasma
Jian-Rong Yang(杨建荣), Kui Lv(吕岿), Lei Xu(许磊), Jie-Jian Mao(毛杰键), Xi-Zhong Liu(刘希忠), Ping Liu(刘萍). Chin. Phys. B, 2017, 26(6): 065202.
[14] Application of multi-pulse optical imaging to measure evolution of laser-produced counter-streaming flows
Dawei Yuan(袁大伟), Yutong Li(李玉同), Baojun Zhu(朱保君), Yanfei Li(李彦霏), Jiayong Zhong(仲佳勇), Huigang Wei(魏会冈), Chang Liu(刘畅), Xiaoxia Yuan(原晓霞), Zhe Zhang(张喆), Guiyun Liang(梁贵云), Feilu Wang(王菲鹿), Fang Li(李芳), Jiarui Zhao(赵家瑞), Neng Hua(华能), Baoqiang Zhu(朱宝强), Jianqiang Zhu(朱健强), Shaoen Jiang(江少恩), Kai Du(杜凯), Yongkun Ding(丁永坤), Gang Zhao(赵刚), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 054206.
[15] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
No Suggested Reading articles found!