Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 063401    DOI: 10.1088/1674-1056/22/6/063401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The stereodynamic properties of the F + HO (v, j)→HF + O reaction on the 1A' and 3A' potential energy surfaces by quasi-classical trajectory: Initial excitation effect (v =1-3, j = 0 and v = 0, j =1-3)

Zhao Dan (赵丹)a b, Chu Tian-Shu (楚天舒)b c, Hao Ce (郝策)a
a School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China;
b State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
c Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China
Abstract  The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1A' and 3A' potential energy surfaces (PESs). Based on the polarization-dependent differential cross sections (PDDCSs) and the angular distributions of the product angular momentum with the reactant at different values of initial v or j, the results show that the product scattering and product polarization have strong links with initial vibrational-rotational numbers of v and j. The significant manifestation of the normal DCSs is that the forward scattering gradually becomes predominant with the initial vibrational excitation increasing, and the scattering angle of the HF product taking place on the 3A' potential energy surface is found to be more sensitive to the initial value of v. The product orientation and alignment are strongly dependent on the initial rovibrational excitation effect. With enhancement in the initial rovibrational excitation effect, there is an overall decrease in the product orientation as well as in the product alignment either perpendicular to the reagent relative velocity vector k or along the direction of the y axis, for which the initial rotational excitation effect is much more noticeable than the vibrational excitation effect. Moreover, the initial rovibrational excitation effect on the product polarization is more pronounced for the 3A' potential energy surface than for the 1A' potential energy surface.
Keywords:  stereodynamics      quasi-classical trajectory      rotational excitation      vibrational excitation  
Received:  05 September 2012      Revised:  07 November 2012      Accepted manuscript online: 
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  34.50.Lf (Chemical reactions)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874096 and 20633070) and the Natural Science Foundation of Qingdao University, China (Grant No. 063-06300510).
Corresponding Authors:  Chu Tian-Shu     E-mail:  tschu@dicp.ac.cn; tschu008@163.com

Cite this article: 

Zhao Dan (赵丹), Chu Tian-Shu (楚天舒), Hao Ce (郝策) The stereodynamic properties of the F + HO (v, j)→HF + O reaction on the 1A' and 3A' potential energy surfaces by quasi-classical trajectory: Initial excitation effect (v =1-3, j = 0 and v = 0, j =1-3) 2013 Chin. Phys. B 22 063401

[1] Sloan J J, Watson D G, Williamson J M and Wright J S 1981 J. Chem. Phys. 75 1190
[2] Bradforth S E, Arnold D W, Metz R B, Weaver A and Neumark D M 1991 J. Phys. Chem. 95 8066
[3] Dixon R N and Tachikawa H 1999 Mol. Phys. 97 195
[4] Kornweitz H and Persky A 2000 Chem. Phys. Lett. 331 132
[5] Elghobashi N and Gonzalez L 2004 Phys. Chem. Chem. Phys. 6 4071
[6] Neumark D M 2005 Phys. Chem. Chem. Phys. 7 433
[7] Deyerl H J and Continetti R E 2005 Phys. Chem. Chem. Phys. 7 855
[8] Gogtas F 2008 J. Comput. Chem. 29 1889
[9] Zanchet A, Gonzalez-Lezana T, Aguado A, Gomez-Carrasco S and Roncero O 2010 J. Phys. Chem. A 114 9733
[10] Gomez-Carrasco S, Gonzalez-Sanchez L, Aguado A, Paniagua M, Roncero O, Hernandez M L and Alvarino J M 2004 Chem. Phys. Lett. 383 25
[11] Gomez-Carrasco S, Gonzalez-Sanchez L, Aguado A, Roncero O, Alvarino J M, Hernandez M L and Paniagua M 2004 J. Chem. Phys. 121 4605
[12] Gomez-Carrasco S, Roncero O, Gonzalez-Sanchez L, Hernandez M L, Alvarino J M, Paniagua M and Aguado A 2005 J. Chem. Phys. 123 114310
[13] Gomez-Carrasco S, Hernandez M L and Alvarino J M 2007 Chem. Phys. Lett. 435 188
[14] Gonzalez-Sanchez L, Gomez-Carrasco S, Aguado A, Paniagua M, Hernandez M L, Alvarino J M and Roncero O 2004 J. Chem. Phys. 121 309
[15] Gonzalez-Sanchez L, Gomez-Carrasco S, Aguado A, Paniagua M, Hernandez M L, Alvarino J M and Roncero O 2004 J. Chem. Phys. 121 9865
[16] Gonzalez-Sanchez L, Gomez-Carrasco S, Aguado A, Paniagua M, Hernandez M L, Alvarino J M and Roncero O 2004 Mol. Phys. 102 2381
[17] Gomez-Carrasco S and Roncero O 2006 J. Chem. Phys. 125 054102
[18] Chu T S, Zhang H, Yuan S P, Fu A P, Si H Z, Tian F H and Duan Y B 2009 J. Phys. Chem. A 113 3470
[19] Chu T S 2010 J. Comput. Chem. 31 1385
[20] Han B R, Zong F J, Wang C L, Ma W Y and Zhou J H 2010 Chem. Phys. 374 94
[21] Gogtas F, Tutuk R and Kurban M 2010 J. Comput. Chem. 31 2607
[22] Kurban M, Gogtas F, Karabulut E and Tutuk R 2011 Mol. Phys. 109 789
[23] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[24] Han K L 1997 Phys. Rev. A 56 4992
[25] Ju L P, Han K L and Zhang J Z 2009 J. Comput. Chem. 30 305
[26] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[27] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[28] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[29] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[30] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
[31] Chen X Q, Wang M S, Yang C L and Wu J C 2012 Chin. Phys. B 21 023402
[32] Li X H, Wang M S, Pino I, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[33] Yue X F 2012 Chin. Phys. B 21 073401
[34] Jing X, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
[35] Hou C Y, Li Y M and Zhao D 2009 Chem. Phys. 364 64
[36] Xu Z H and Zong F J 2011 Chin. Phys. B 20 063104
[37] Han B R, Yang H A, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
[38] Xu W W and Zhao G J 2012 Cent. Eur. J. Phys. 10 253
[39] Zhao J 2011 Can. J. Chem.-Rev. Can. Chim. 89 650
[40] Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
[41] Zhao J, Xu Y, Zhao X and Meng Q T 2010 Sci. China: Chem. 53 927
[42] Zhao J, Xu Y, Yue D G and Meng Q T 2009 Chem. Phys. Lett. 471 160
[43] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B: At. Mol. Opt. Phys. 42 165006
[44] Zhao J, Xu Y and Meng Q T 2009 Can. J. Phys. 87 1247
[45] Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
[46] Zhao D, Chu T S and Hao C 2012 J. Mol. Model. 18 3283
[47] Zhao D, Zhang T Y and Chu T S 2010 Can. J. Chem.-Rev. Can. Chim. 88 893
[48] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[1] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[2] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[3] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[4] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[5] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[6] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[7] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[8] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[9] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[10] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[11] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
[12] Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S(3P) + H2→SH + H
Shan Guang-Ling (单广玲), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Li Yan-Qing (李艳青). Chin. Phys. B, 2014, 23(6): 068201.
[13] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[14] Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction
Wei Qiang (魏强). Chin. Phys. B, 2014, 23(2): 023401.
[15] Theoretical study of stereodynamics for the N+H2/D2/T2 reactions
Li Yong-Qing (李永庆), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Chi Xiao-Lin (迟晓琳), Ding Yong (丁勇), Ma Feng-Cai (马凤才). Chin. Phys. B, 2014, 23(12): 123401.
No Suggested Reading articles found!