Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078503    DOI: 10.1088/1674-1056/28/7/078503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Topological magnon insulator with Dzyaloshinskii-Moriya interaction under the irradiation of light

Liang Chen(陈亮)
School of Physics and Electronic Engineering, Taishan University, Taian 271000, China
Abstract  

The topological magnon insulator on a honeycomb lattice with Dzyaloshinskii-Moriya interaction (DMI) is studied under the application of a circularly polarized light. At the high-frequency regime, the effective tight-binding model is obtained based on Brillouin-Wigner theory. Then, we study the corresponding Berry curvature and Chern number. In the Dirac model, the interplay between a light-induced handedness-dependent effective DMI and intrinsic DMI is discussed.

Keywords:  magnon      light      Brillouin-Wigner theory      Dzyaloshinskii-Moriya  
Received:  02 January 2019      Revised:  29 April 2019      Accepted manuscript online: 
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  75.30.-m (Intrinsic properties of magnetically ordered materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61604106) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014FL025).

Corresponding Authors:  Liang Chen     E-mail:  zhuclweifang@sina.com

Cite this article: 

Liang Chen(陈亮) Topological magnon insulator with Dzyaloshinskii-Moriya interaction under the irradiation of light 2019 Chin. Phys. B 28 078503

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Wang X S, Su Y and Wang X R 2017 Phys. Rev. B 95 014435
[4] Pantaleón P A and Xian Y 2017 J. Phys.: Condens. Matter 29 295701
[5] Fransson J, Black-Schaffer A M and Balatsky A V 2016 Phys. Rev. B 94 075401
[6] Kim S K, Ochoa H, Zarzuela R and Tserkovnyak Y 2016 Phys. Rev. Lett. 117 227201
[7] Ferreiros Y and Vozmediano M A H 2018 Phys. Rev. B 97 054404
[8] Owerre S A 2016 J. Appl. Phys. 120 043903
[9] Rückriegel A, Brataas and Duine R A 2018 Phys. Rev. B 97 081106
[10] Cheng R, Okamoto S and Xiao D 2016 Phys. Rev. Lett. 117 217202
[11] Zyuzin V A and Kovalev A A 2016 Phys. Rev. Lett. 117 217203
[12] Zhang L F, Ren J, Wang J S and Li B 2013 Phys. Rev. B 87 144101
[13] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[14] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[15] Lindner N H, Rafael G and Galitski V 2011 Nat. Phys. 7 490
[16] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114
[17] Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005
[18] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237
[19] Bilitewski T and Cooper N R 2015 Phys. Rev. A 91 063611
[20] Zhong W T, Liu J, Hua D, Hou H Y and Yan K J 2018 Acta Phys. Sin. 18 184208 (in Chinese)
[21] Liu M J, Zhang X W, Wang J, Qin Y B, Chen Y Hua and Huang W 2018 Acta Phys. Sin. 20 207801 (in Chinese)
[22] Wang X, Pu H B, Liu Q and An L Q 2018 Chin. Phys. B 27 108502
[23] Qi K Z, Tang Y, Yang L P, Yang F Y and Guo W J 2018 Chin. Phys. B 27 107801
[24] Shen N C 2016 Physics 45 790 (in Chinese)
[25] Mikami T, Kitamura S, Yasuda K, Tsuji N, Oka T and Aoki H 2016 Phys. Rev. B 93 144307
[26] Mohan P, Saxena R, Kundu A and Rao S 2016 Phys. Rev. B 94 235419
[27] Oka T and Aoki H 2009 Phys. Rev. B 79 081406
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[3] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[4] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[5] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[6] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[7] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[12] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[13] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[14] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[15] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
No Suggested Reading articles found!