CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides |
Hai Bo(薄海)1, Tianshuang Ren(任天爽)1, Zheng Chen(陈峥)1, Meng Zhang(张蒙)1, Yanwu Xie(谢燕武)1,2 |
1 Interdisciplinary Center of Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract In this study, we have explored the ways to fabricate and optimize high-quality ultrathin YBa2Cu3O7-δ (YBCO) films grown on single-crystal (001) SrTiO3 substrates. Nearly atomic-flat YBCO films are obtained by pulsed laser deposition. Our result shows that the termination of SrTiO3 has only a negligible effect on the properties of YBCO. In contrast, we found that capping a non-superconducting oxide layer can generally enhance the superconductivity of YBCO. PrBa2Cu3O7, La2CuO4, LaMnO3, SrTiO3, and LaAlO3 have been examined as capping layers, and the minimum thickness of superconducting YBCO with capping is~2 unit cells-3 unit cells. This result might be useful in constructing good-performance YBCO-based field effect devices.
|
Received: 21 February 2019
Revised: 05 April 2019
Accepted manuscript online:
|
PACS:
|
74.72.-h
|
(Cuprate superconductors)
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
Fund: Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (Grants Nos. 2017YFA0303002 and 2016YFA0300204) and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Yanwu Xie
E-mail: ywxie@zju.edu.cn
|
Cite this article:
Hai Bo(薄海), Tianshuang Ren(任天爽), Zheng Chen(陈峥), Meng Zhang(张蒙), Yanwu Xie(谢燕武) Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides 2019 Chin. Phys. B 28 067402
|
[1] |
Tao X and Jian X 2017 Physics 46 514 (in Chinese)
|
[2] |
Ren M Q, Yan Y J, Zhang T and Feng D L 2016 Chin. Phys. Lett. 33 127402
|
[3] |
Terashima T, Shimura K, Bando Y, Matsuda Y, Fujiyama A and Komiyama S 1991 Phys. Rev. Lett. 67 1362
|
[4] |
Norton D P and Lowndes D H 1993 Appl. Phys. Lett. 63 1432
|
[5] |
Triscone J M, Fischer, Brunner L, Antognazza L and Kent A D 1990 Phys. Rev. Lett. 64 804
|
[6] |
Lowndes D H, Norton D P and Budai J D 1990 Phys. Rev. Lett. 65 1160
|
[7] |
Li Q, Xi X X, Wu X D, Inam A, Vadlamannati S, McLean W L, Venkatesan T, Ramesh R, Hwang D M, Martinez J A and Nazar L 1990 Phys. Rev. Lett. 64 3086
|
[8] |
Chan I N, Vier D C, Hasen J, Guimpel J, Schultz S and Schuller I K 1993 Phys. Lett. A 175 241
|
[9] |
Kwon C, Li Q, Takeuchi I, Warburton P A, Doughty C, Mao S N, Xi X X and Venkatesan T 1996 Physica C 266 75
|
[10] |
Mannhart J 1996 Supercond. Sci. Technol. 9 49
|
[11] |
Ahn C H, Triscone J M and Mannhart J 2003 Nature 424 1015
|
[12] |
Arpaia R, Golubev D, Baghdadi R, Ciancio R, DraŽić G, Orgiani P, Montemurro D, Bauch T and Lombardi F 2017 Phys. Rev. B 96 064525
|
[13] |
Mannhart J, Bednorz J G, Müller K A and Schlom D G 1991 Z. Phys. B: Condens. Matter 83 307
|
[14] |
Mannhart J, Schlom D G, Bednorz J G and Muller K A 1991 Phys. Rev. Lett. 67 2099
|
[15] |
Matthey D, Reyren N, Triscone J M and Schneider T 2007 Phys. Rev. Lett. 98 057002
|
[16] |
Xi X X, Li Q, Doughty C, Kwon C, Bhattacharya S, Findikoglu A T and Venkatesan T 1991 Appl. Phys. Lett. 59 3470
|
[17] |
Kawahara T, Suzuki T, Komai E, Nakazawa K, Terashima T and Bando Y 1996 Physica C: Supercond. 266 149
|
[18] |
Crassous A, Bernard R, Fusil S, Bouzehouane K, Briatico J, Bibes M, Barthelemy A and Villegas J E 2013 J. Appl. Phys. 113 024910
|
[19] |
Ahn C H, Gariglio S, Paruch P, Tybell T, Antognazza L and Triscone J M 1999 Science 284 1152
|
[20] |
Crassous A, Bernard R, Fusil S, Bouzehouane K, Le Bourdais D, Enouz-Vedrenne S, Briatico J, Bibes M, Barthélémy A and Villegas J E 2011 Phys. Rev. Lett. 107 247002
|
[21] |
Horide T, Matsufuji T and Matsumoto K 2015 IEEE Trans. Appl. Supercond. 25 1800204
|
[22] |
Fête A, Rossi L, Augieri A and Senatore C 2016 Appl. Phys. Lett. 109 192601
|
[23] |
Leng X, Garcia-Barriocanal J, Bose S, Lee Y and Goldman A M 2011 Phys. Rev. Lett. 107 027001
|
[24] |
Khanof S, Mannhart J and Boschker H 2018 Appl. Phys. Lett. 113 022605
|
[25] |
Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
|
[26] |
Ohtomo A and Hwang H Y 2004 Nature 427 423
|
[27] |
Wang X R, Li C J, Lü W M, Paudel T R, Leusink D P, Hoek M, Poccia N, Vailionis A, Venkatesan T, Coey J M D, Tsymbal E Y, Ariando and Hilgenkamp H 2015 Science 349 716
|
[28] |
Huijben M, Koster G, Blank D H A and Rijnders G 2008 Phase Transit. 81 703
|
[29] |
Zhai H Y and Chu W K 2000 Appl. Phys. Lett. 76 3469
|
[30] |
Wu J, Pelleg O, Logvenov G, Bollinger A T, Sun Y J, Boebinger G S, Vanević M, Radović Z and Božović I 2013 Nat. Mater. 12 877
|
[31] |
Zhang M, Chen Z, Mao B, Li Q, Bo H, Ren T, He P, Liu Z and Xie Y 2018 Phys. Rev. Mater. 2 065002
|
[32] |
Sefrioui Z, Varela M, Peña V, Arias D, León C, Santamaría J, Villegas J E, Martínez J L, Saldarriaga W and Prieto P 2002 Appl. Phys. Lett. 81 4568
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|