CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Crystal structures and sign reversal Hall resistivities in iron-based superconductors Lix(C3H10N2)0.32FeSe (0.15 < x < 0.4) |
Rui-Jin Sun(孙瑞锦)1,2, Shi-Feng Jin(金士锋)1,3, Jun Deng(邓俊)1,2, Mu-Nan Hao(郝木难)1,2, Lin-Lin Zhao(赵琳琳)1,2, Xiao Fan(范晓)1,2, Xiao-Ning Sun(孙晓宁)1,2, Jian-Gang Guo(郭建刚)1,2, Lin Gu(谷林)1,2 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China |
|
|
Abstract Heavy electron-doped FeSe-derived materials have attracted attention due to their uncommon electronic structures with only ‘electron pockets’, and they are different from other iron-based superconductors. Here, we report the crystal structures, superconductivities and normal state properties of two new Li-doped FeSe-based materials, i.e., Li0.15(C3H10N2)0.32FeSe (P-4) and Lix(C3H10N2)0.32FeSe (P4/nmm, 0.25 < x < 0.4) with superconducting transition temperatures ranging from 40 K to 46 K. The determined crystal structures reveal a coupling between Li concentration and the orientation of 1,3-diaminopropane molecules within the largely expanded FeSe layers. Superconducting fluctuations appear in the resistivity of the two superconductors and are fitted in terms of the quasi two-dimensional (2D) Lawrence-Doniach model. The existence of a crossing point and scaling behavior in the T-dependence of diamagnetic response also suggests that the two superconductors belong to the quasi-2D system. Interestingly, with the increase of temperature, a sign of Hall coefficient (RH) reversing from negative to positive is observed at~185 K in both phases, suggesting that ‘hole pockets’ emerge in these electron-doped FeSe materials. First principle calculations indicate that the increase in FeSe layer distance will lift up a ‘hole band’ associated with dx2-y2 character and increase the hole carriers. Our findings suggest that the increase in two dimensionalities may lead to the sign-reversal Hall resistivity in Lix(C3H10N2)0.32FeSe at high temperature.
|
Received: 08 March 2019
Revised: 10 April 2019
Accepted manuscript online:
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472266, 51532010, 91422303, and 51772323), the National Key Research and Development Program of China (Grant No. 2016YFA0300301), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH013). |
Corresponding Authors:
Shi-Feng Jin, Lin Gu
E-mail: shifengjin@iphy.ac.cn;l.gu@iphy.ac.cn
|
Cite this article:
Rui-Jin Sun(孙瑞锦), Shi-Feng Jin(金士锋), Jun Deng(邓俊), Mu-Nan Hao(郝木难), Lin-Lin Zhao(赵琳琳), Xiao Fan(范晓), Xiao-Ning Sun(孙晓宁), Jian-Gang Guo(郭建刚), Lin Gu(谷林) Crystal structures and sign reversal Hall resistivities in iron-based superconductors Lix(C3H10N2)0.32FeSe (0.15 < x < 0.4) 2019 Chin. Phys. B 28 067401
|
[1] |
Xu Y M, Huang Y B, Cui X, Razzoli Y E, Radovic M, Shi M, Chen G F, Zheng P, Wang N L, Zhang C L, Dai P C, Hu J P, Wang Z and Ding H 2011 Nat. Phys. 7 198
|
[2] |
Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
|
[3] |
Wang F and Lee D H 2011 Science 332 200
|
[4] |
Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410
|
[5] |
Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki, Wang K Z, Wen J, Gu G D, Ding H and Shin S 2018 Science 360 182
|
[6] |
Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
|
[7] |
Qian T, Wang X P, Jin W C, Zhang P, Richard, Xu P G, Dai X, Fang Z, Guo J G, Chen X L and Ding H 2011 Phys. Rev. Lett. 106 187001
|
[8] |
Shi X, Han Z Q, Peng X L, Richard P, Qian T, Wu X X, Qiu M W, Wang S C, Hu J P, Sun Y J and Ding H 2017 Nat. Commun. 8 14988
|
[9] |
Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
|
[10] |
Ren M, Yan Y, Niu X, Tao R, Hu D, Peng R, Xie B, Zhao J, Zhang T and Feng D L 2017 Sci. Adv. 3 e1603228
|
[11] |
Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Zhou X, Liu F K, Lu Z, Zhao Z, Chen C, Xu Z and Zhou X J 2016 Nat. Commun. 7 10608
|
[12] |
McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C and Cava R J 2009 Phys. Rev. Lett. 103 057002
|
[13] |
Sun S, Wang S, Yu R and Lei H 2017 Phys. Rev. B 96 064512
|
[14] |
Lei H, Graf D, Hu R, Ryu H, Choi E S, Tozer S W and Petrovic C 2012 Phys. Rev. B 85 094515
|
[15] |
Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M and Prassides K 2009 Phys. Rev. B 80 064506
|
[16] |
Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi, Casper S F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
|
[17] |
Sun J P, Ye G Z, Shahi P, Yan J Q, Matsuura K, Kontani H, Zhang G M, Zhou Q, Sales B C, Shibauchi T, Uwatoko Y, Singh D J and Cheng J G 2017 Phys. Rev. Lett. 118 147004
|
[18] |
Ding X, Pan Y, Yang H and Wen H H 2014 Phys. Rev. B 89 224515
|
[19] |
Lei B, Xiang Z J, Lu X F, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q M, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. B 93 060501
|
[20] |
Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F and Zhao Z 2015 Phys. Rev. B 92 064515
|
[21] |
Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko, Xing Y G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X and Cheng J G 2018 Nat. Commun. 9 380
|
[22] |
Zhao W, Li M, Chang C Z, Jiang J, Wu L J, Liu C X, Jagadeesh S, Moodera, Zhu Y M and Chan H W 2018 Sci. Adv. 4 eaao2682
|
[23] |
Dewald R R and Dye J L 1964 J. Phys. Chem. 68 122
|
[24] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[25] |
Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
|
[26] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[27] |
Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J 2013 Nat. Mater. 12 15
|
[28] |
Ying T P, Chen X L, Wang G, Jin S F, Lai X F, Zhou T T, Zhang H, Shen S J and Wang W Y 2013 J. Am. Chem. Soc. 135 2951
|
[29] |
Young V G, McKelvy M J, Glaunsinger W S and Dreele von R B 1988 Solid State Ion. 26 47
|
[30] |
Sóñora D, Carballeira C, Ponte J J, Xie T, Luo H Q, Li S L and Mosqueira J 2017 Phys. Rev. B 96 014516
|
[31] |
Rey R I, Carballeira C, Mosqueira J, Salem-Sugui S, Alvarenga A D, Luo H Q, Lu X Y, Chen Y C and Vidal F 2013 Supercond Sci. Technol. 26 055004
|
[32] |
Hikami S and Larkin A I 1988 Mod. Phys. Lett. B 2 693
|
[33] |
Kes P H, Beek van der C J, Maley M P, McHenry M E, Huse D A, Menken M J V and Menovsky A A 1991 Phys. Rev. Lett. 67 2383
|
[34] |
Lang M, Steglich F, Toyota N and Sasaki T 1994 Phys. Rev. B 49 15227
|
[35] |
Welp U, Fleshler S, Kwok W K, Klemm R A, Vinokur V M, Downey J, Veal B and Crabtree G W 1991 Phys. Rev. Lett. 67 3180
|
[36] |
Du Z Y, Yang X, Altenfeld D, Gu Q Q, Yang H, Eremin I, Hirschfeld P J, Mazin I I, Lin H, Zhu X Y and Wen H H 2018 Nat. Phys. 14 134
|
[37] |
Subedi Alaska, Zhang L J, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
|
[38] |
Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K and Takahashi T 2014 Phys. Rev. Lett. 113 237001
|
[39] |
Huang D, Song C L, Webb T A, Fang S, Chang C Z, Moodera J S, Kaxiras E and Hoffman J E 2015 Phys. Rev. Lett. 115 017002
|
[40] |
Li C H, Sun S S, Wang S H and Lei H C 2017 Phys. Rev. B 96 134503
|
[41] |
Hrovat M M, Jeglic P, Klanjsek M, Hatakeda T, Noji T, Tanabe Y, Urata T, Huynh K K, Koike Y, Tanigaki K and Arcon D 2015 Phys. Rev. B 92 094513
|
[42] |
Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G and Shen Z X 2017 Phys. Rev. Lett. 118 067002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|