|
|
Low-temperature growth of large-scale, single-crystalline graphene on Ir(111) |
Hui Guo(郭辉)1, Hui Chen(陈辉)1, Yande Que(阙炎德)1, Qi Zheng(郑琦)1, Yu-Yang Zhang(张余洋)1,2, Li-Hong Bao(鲍丽宏)1, Li Huang(黄立)1, Ye-Liang Wang(王业亮)1, Shi-Xuan Du(杜世萱)1,2, Hong-Jun Gao(高鸿钧)1,2 |
1 Institute of Physics and University of Chinese Academy of Sciences, Beijing 100190, China;
2 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Iridium is a promising substrate for self-limiting growth of graphene. However, single-crystalline graphene can only be fabricated over 1120 K. The weak interaction between graphene and Ir makes it challenging to grow graphene with a single orientation at a relatively low temperature. Here, we report the growth of large-scale, single-crystalline graphene on Ir(111) substrate at a temperature as low as 800 K using an oxygen-etching assisted epitaxial growth method. We firstly grow polycrystalline graphene on Ir. The subsequent exposure of oxygen leads to etching of the misaligned domains. Additional growth cycle, in which the leftover aligned domain serves as a nucleation center, results in a large-scale and single-crystalline graphene layer on Ir(111). Low-energy electron diffraction, scanning tunneling microscopy, and Raman spectroscopy experiments confirm the successful growth of large-scale and single-crystalline graphene. In addition, the fabricated single-crystalline graphene is transferred onto a SiO2/Si substrate. Transport measurements on the transferred graphene show a carrier mobility of about 3300 cm2·V-1·s-1. This work provides a way for the synthesis of large-scale, high-quality graphene on weak-coupled metal substrates.
|
Received: 27 February 2019
Revised: 21 March 2019
Accepted manuscript online:
|
PACS:
|
61.48.Gh
|
(Structure of graphene)
|
|
61.05.jh
|
(Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Corresponding Authors:
Shi-Xuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Hui Guo(郭辉), Hui Chen(陈辉), Yande Que(阙炎德), Qi Zheng(郑琦), Yu-Yang Zhang(张余洋), Li-Hong Bao(鲍丽宏), Li Huang(黄立), Ye-Liang Wang(王业亮), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Low-temperature growth of large-scale, single-crystalline graphene on Ir(111) 2019 Chin. Phys. B 28 056107
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
|
[3] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
|
[4] |
Dedkov Y S, Fonin M, Rüdiger U and Laubschat C 2008 Phys. Rev. Lett. 100 107602
|
[5] |
Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
|
[6] |
Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
|
[7] |
Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
|
[8] |
Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X and Gao H J 2018 Acta Phys. Sin. 67 126801 (in Chinese)
|
[9] |
Marchini S, Günther S and Wintterlin J 2007 Phys. Rev. B 76 075429
|
[10] |
Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
|
[11] |
Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
|
[12] |
Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
|
[13] |
Yang H, Shen C M, Tian Y, Wang G Q, Lin S X, Zhang Y, Gu C Z, Li J J and Gao H J 2014 Chin. Phys. B 23 096803
|
[14] |
Li X S, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L and Ruoff R S 2011 J. Am. Chem. Soc. 133 2816
|
[15] |
Gao M, Pan Y, Huang L, Hu H, Zhang L Z, Guo H M, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 033101
|
[16] |
Sutter P, Sadowski J T and Sutter E 2009 Phys. Rev. B 80 245411
|
[17] |
N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
|
[18] |
Coraux J, N'Diaye A T, Engler M, Busse C, Wall D, Buckanie N, Heringdorf F J M Z, van Gastel R, Poelsema B and Michely T 2009 New J. Phys. 11 023006
|
[19] |
Coraux J, N'Diaye A T, Busse C and Michely T 2008 Nano Lett. 8 565
|
[20] |
Arnoult W J and McLellan R B 1972 Scr. Metall. 6 1013
|
[21] |
Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L and Gao H J 2012 J. Phys.: Condens. Matter 24 314214
|
[22] |
Loginova E, Nie S, Thürmer K, Bartelt N C and McCarty K F 2009 Phys. Rev. B 80 085430
|
[23] |
Wu P, Jiang H J, Zhang W H, Li Z Y, Hou Z H and Yang J L 2012 J. Am. Chem. Soc. 134 6045
|
[24] |
Hattab H, N'Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J and Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903
|
[25] |
van Gastel R, N'Diaye A T, Wall D, Coraux J, Busse C, Buckanie N M, Meyer zu Heringdorf F J, Horn von Hoegen M, Michely T and Poelsema B 2009 Appl. Phys. Lett. 95 121901
|
[26] |
Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H and Cheng H M 2012 Nat. Commun. 3 699
|
[27] |
Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F E, McCarty K F and Rotenberg E 2011 Phys. Rev. B 83 125428
|
[28] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|