Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056107    DOI: 10.1088/1674-1056/28/5/056107
RAPID COMMUNICATION Prev   Next  

Low-temperature growth of large-scale, single-crystalline graphene on Ir(111)

Hui Guo(郭辉)1, Hui Chen(陈辉)1, Yande Que(阙炎德)1, Qi Zheng(郑琦)1, Yu-Yang Zhang(张余洋)1,2, Li-Hong Bao(鲍丽宏)1, Li Huang(黄立)1, Ye-Liang Wang(王业亮)1, Shi-Xuan Du(杜世萱)1,2, Hong-Jun Gao(高鸿钧)1,2
1 Institute of Physics and University of Chinese Academy of Sciences, Beijing 100190, China;
2 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Iridium is a promising substrate for self-limiting growth of graphene. However, single-crystalline graphene can only be fabricated over 1120 K. The weak interaction between graphene and Ir makes it challenging to grow graphene with a single orientation at a relatively low temperature. Here, we report the growth of large-scale, single-crystalline graphene on Ir(111) substrate at a temperature as low as 800 K using an oxygen-etching assisted epitaxial growth method. We firstly grow polycrystalline graphene on Ir. The subsequent exposure of oxygen leads to etching of the misaligned domains. Additional growth cycle, in which the leftover aligned domain serves as a nucleation center, results in a large-scale and single-crystalline graphene layer on Ir(111). Low-energy electron diffraction, scanning tunneling microscopy, and Raman spectroscopy experiments confirm the successful growth of large-scale and single-crystalline graphene. In addition, the fabricated single-crystalline graphene is transferred onto a SiO2/Si substrate. Transport measurements on the transferred graphene show a carrier mobility of about 3300 cm2·V-1·s-1. This work provides a way for the synthesis of large-scale, high-quality graphene on weak-coupled metal substrates.

Keywords:  graphene      low-temperature growth      single-crystalline      Ir(111)  
Received:  27 February 2019      Revised:  21 March 2019      Accepted manuscript online: 
PACS:  61.48.Gh (Structure of graphene)  
  61.05.jh (Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  72.80.Vp (Electronic transport in graphene)  
Corresponding Authors:  Shi-Xuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Hui Guo(郭辉), Hui Chen(陈辉), Yande Que(阙炎德), Qi Zheng(郑琦), Yu-Yang Zhang(张余洋), Li-Hong Bao(鲍丽宏), Li Huang(黄立), Ye-Liang Wang(王业亮), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Low-temperature growth of large-scale, single-crystalline graphene on Ir(111) 2019 Chin. Phys. B 28 056107

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[3] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[4] Dedkov Y S, Fonin M, Rüdiger U and Laubschat C 2008 Phys. Rev. Lett. 100 107602
[5] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[6] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[7] Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
[8] Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X and Gao H J 2018 Acta Phys. Sin. 67 126801 (in Chinese)
[9] Marchini S, Günther S and Wintterlin J 2007 Phys. Rev. B 76 075429
[10] Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
[11] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[12] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
[13] Yang H, Shen C M, Tian Y, Wang G Q, Lin S X, Zhang Y, Gu C Z, Li J J and Gao H J 2014 Chin. Phys. B 23 096803
[14] Li X S, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L and Ruoff R S 2011 J. Am. Chem. Soc. 133 2816
[15] Gao M, Pan Y, Huang L, Hu H, Zhang L Z, Guo H M, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 033101
[16] Sutter P, Sadowski J T and Sutter E 2009 Phys. Rev. B 80 245411
[17] N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
[18] Coraux J, N'Diaye A T, Engler M, Busse C, Wall D, Buckanie N, Heringdorf F J M Z, van Gastel R, Poelsema B and Michely T 2009 New J. Phys. 11 023006
[19] Coraux J, N'Diaye A T, Busse C and Michely T 2008 Nano Lett. 8 565
[20] Arnoult W J and McLellan R B 1972 Scr. Metall. 6 1013
[21] Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L and Gao H J 2012 J. Phys.: Condens. Matter 24 314214
[22] Loginova E, Nie S, Thürmer K, Bartelt N C and McCarty K F 2009 Phys. Rev. B 80 085430
[23] Wu P, Jiang H J, Zhang W H, Li Z Y, Hou Z H and Yang J L 2012 J. Am. Chem. Soc. 134 6045
[24] Hattab H, N'Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J and Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903
[25] van Gastel R, N'Diaye A T, Wall D, Coraux J, Busse C, Buckanie N M, Meyer zu Heringdorf F J, Horn von Hoegen M, Michely T and Poelsema B 2009 Appl. Phys. Lett. 95 121901
[26] Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H and Cheng H M 2012 Nat. Commun. 3 699
[27] Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F E, McCarty K F and Rotenberg E 2011 Phys. Rev. B 83 125428
[28] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!