Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 048801    DOI: 10.1088/1674-1056/28/4/048801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation

Zhen-Wu Jiang(姜振武)1, Shou-Shuai Gao(高守帅)1, Si-Yu Wang(王思宇)1, Dong-Xiao Wang(王东潇)1, Peng Gao(高鹏)2, Qiang Sun(孙强)2, Zhi-Qiang Zhou(周志强)1, Wei Liu(刘玮)1, Yun Sun(孙云)1, Yi Zhang(张毅)1
1 Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, China;
2 Tianjin Institute of Power Source, Tianjin 300384, China
Abstract  

Cd-free kesterite structured solar cells are currently attracting attention because they are environmentally friendly. It is reported that Zn(O,S) can be used as a buffer layer in these solar cells. However, the band alignment is not clear and the carrier concentration of Zn(O,S) layer is low. In this study, the band alignment of the Zn(O,S)/Cu2ZnSnSe4 p-n junction solar cell and the effect of In2S3/Zn(O,S) double buffer layer are studied by numerically simulation with wxAMPS software. By optimizing the band gap structure between Zn(O,S) buffer layer and Cu2ZnSnSe4 absorber layer and enhancing the carrier concentration of Zn(O,S) layer, the device efficiency can be improved greatly. The value of CBO is in a range of 0 eV-0.4 eV for S/(S+O)=0.6-0.8 in Zn(O,S). The In2S3 is mainly used to increase the carrier concentration when it is used as a buffer layer together with Zn(O,S).

Keywords:  CZTSe      band alignment      double buffer layer      simulation  
Received:  06 January 2019      Revised:  31 January 2019      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.30.gg (Design and simulation)  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.jn (Thin film Cu-based I-III-VI2 solar cells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51572132, 61674082, and 61774089), the National Key Research and Development Program of China (Grant No. 2018YFB1500202), the Tianjin Natural Science Foundation of Key Project of China (Grant Nos. 16JCZDJC30700 and 18JCZDJC31200), and the 111 Project, China (Grant No. B16027).

Corresponding Authors:  Yi Zhang     E-mail:  yizhang@nankai.edu.cn

Cite this article: 

Zhen-Wu Jiang(姜振武), Shou-Shuai Gao(高守帅), Si-Yu Wang(王思宇), Dong-Xiao Wang(王东潇), Peng Gao(高鹏), Qiang Sun(孙强), Zhi-Qiang Zhou(周志强), Wei Liu(刘玮), Yun Sun(孙云), Yi Zhang(张毅) Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation 2019 Chin. Phys. B 28 048801

[1] Li J, Kim S, Nam D, Liu X, Kim J, Cheong H, Liu W, Li H, Sun Y and Zhang Y 2017 Sol. Energy Mater. Sol. Cells 159 447
[2] Polizzotti A, Repins I L, Noufi R, Wei S H and Mitzi D B 2013 Energy Environ. Sci. 6 3171
[3] Mitzi D B, Gunawan O, Todorov T K, Wang K and Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421
[4] Walsh A, Chen S, Wei S H and Gong X G 2012 Adv. Energy Mater. 2 400
[5] Barkhouse D, Aaron R, Gunawan O, Gokmen T, Todorov T K and Mitzi D B 2012 Prog. Photovoltaics Res. Appl. 20 6
[6] Bag S, Gunawan O, Gokmen T, Zhu Y, Todorov T K and Mitzi D B 2012 Energy Environ. Sci. 5 7060
[7] Gao S, Jiang Z, Wu L, Ao J, Zeng Y, Sun Y and Zhang Y 2018 Chin. Phys. B 27 018803
[8] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465
[9] Lee Y S, Gershon T, Gunawan O, Todorov T K, Gokmen T, Virgus Y and Guha S 2015 Adv. Energy Mater. 5 1401372
[10] Klenk R, Steigert A, Rissom T, Greiner D, Kaufmann C A, Unold T and Lux-Steiner M C 2014 Prog. Photovoltaics Res. Appl. 22 161
[11] Gautron E, Buffiére M, Harel S, Assmann L, Arzel L, Brohan L, Kessler J and Barreau N 2013 Thin Solid Films 535 175
[12] Yagioka T and Nakada T 2009 Appl. Phys. Express 2 072201
[13] Meyer B K, Polity A, Farangis B, He Y, Hasselkamp D and Wang C 2004 Appl. Phys. Lett. 85 4929
[14] Chua R H, Li X, Walter T, The L K, Hahn T, Hergert F and Wong L H 2016 Appl. Phys. Lett. 108 043505
[15] Grenet L, Grondin P, Coumert K, Karst N, Emieux F, Roux F, Fillon R, Altamura G, Fournier H, Faucher, P and Perraud S 2014 Thin Solid Films 564 375
[16] Neuschitzer M, Lienau K, Guc M, Barrio L C, Haass S, Prieto J M and Izquierdo-Roca 2016 J. Phys. D: Appl. Phys. 49 125602
[17] Li J, Liu X, Liu W, Wu L, Ge B, Lin S, Gao S, Zhou Z, Liu F, Sun Y, Ao J, Zhu H, Mai Y and Zhang Y 2017 Sol. RRL. 1 1700075
[18] Hsieh T M, Lue S J, Ao J, Sun Y, Feng W S and Chang L B 2014 J. Power Sources 246 443
[19] Steirer K X, Garris R L, Li J V, Dzara M J, Ndione P F, Ramanathan K, Repins I, Teeter G and Perkins C L 2015 Phys. Chem. Chem. Phys. 17 15355
[20] Palimar S, Bangera K V and Shivakumar G K 2013 Appl. Nanosci. 3 549
[21] Llican S, Caglar Y, Caglar M and Demirci B 2008 J. Optoelectron. Adv. Mater. 10 2592
[22] Pham A T T, Ta H K T, Liu Y R, Aminzare M, Wong D P, Nguyen T H, Pham N K, Le T B N, Seetawan T, Ju H, Cho S, Chen K H, Tran V C and Phan T B 2018 J. Alloys Compd. 747 156
[23] Benramache S, Benhaoua B and Bentrah H 2013 Nanostrut. Chem. 3 54
[24] Gonçalves G, Elangovan E, Barquinha P, Pereira L, Martins R and Fortunato E 2007 Thin Solid Films 515 8562
[25] Jani M, Raval D, Pati R K, Mukhopadhyay I and Ray A 2018 Bull. Mater. Sci. 41 22
[26] Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H and Mitzi D B 2014 Adv. Mater. 26 7427
[27] Jiang F, Ozaki C, Guna wan, Harada T, Tang Z, Minemoto T, Nose Y and Ikeda S 2016 Chem. Mater. 28 3283
[28] Liu Y, Sun Y and Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124
[29] Omer and Mohamed B 2015 Chin. Phys. Lett. 32 088801
[30] Sharbati S, Keshmiri S H, McGoffin J T and Geisthardt R 2015 Appl. Phys. A 118 1259
[31] Persson C, Platzer-Bjorkman C, Malmstrom J, Torndahl T and Edoff M 2006 Phys. Rev. Lett. 97 46403
[32] Grimm A, Kieven D, Klenk R, Lauermann I, Neisser A, Niesen T and Palm J 2011 Thin Solid Films 520 1330
[33] Huang T J, Yin X, Qi G and Gong H 2014 Phys. Status Solidi RRL. 08 735
[34] Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y and Kitagawa M 2001 Sol. Energy Mater. Sol. Cells 67 83
[35] Barreau N, Bernede J C, Marsillac S and Mokrani A 2002 J. Crystal Growth 235 439
[36] Revathi N, Prathap P, Subbaiah Y P V and Ramakrishna Reddy K T 2008 J. Phys. D: Appl. Phys. 41 155404
[37] Saadallah F, Jebbari N, Kammoun N and Yacoubi N 2011 Int. J. Photoenergy 1-4
[38] Khoshsirat N and Md Yunus N A 2016 J. Electron. Mater. 45 5721
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[7] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[8] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[13] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[14] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!