INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation |
Zhen-Wu Jiang(姜振武)1, Shou-Shuai Gao(高守帅)1, Si-Yu Wang(王思宇)1, Dong-Xiao Wang(王东潇)1, Peng Gao(高鹏)2, Qiang Sun(孙强)2, Zhi-Qiang Zhou(周志强)1, Wei Liu(刘玮)1, Yun Sun(孙云)1, Yi Zhang(张毅)1 |
1 Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, China;
2 Tianjin Institute of Power Source, Tianjin 300384, China |
|
|
Abstract Cd-free kesterite structured solar cells are currently attracting attention because they are environmentally friendly. It is reported that Zn(O,S) can be used as a buffer layer in these solar cells. However, the band alignment is not clear and the carrier concentration of Zn(O,S) layer is low. In this study, the band alignment of the Zn(O,S)/Cu2ZnSnSe4 p-n junction solar cell and the effect of In2S3/Zn(O,S) double buffer layer are studied by numerically simulation with wxAMPS software. By optimizing the band gap structure between Zn(O,S) buffer layer and Cu2ZnSnSe4 absorber layer and enhancing the carrier concentration of Zn(O,S) layer, the device efficiency can be improved greatly. The value of CBO is in a range of 0 eV-0.4 eV for S/(S+O)=0.6-0.8 in Zn(O,S). The In2S3 is mainly used to increase the carrier concentration when it is used as a buffer layer together with Zn(O,S).
|
Received: 06 January 2019
Revised: 31 January 2019
Accepted manuscript online:
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.30.gg
|
(Design and simulation)
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
88.40.jn
|
(Thin film Cu-based I-III-VI2 solar cells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572132, 61674082, and 61774089), the National Key Research and Development Program of China (Grant No. 2018YFB1500202), the Tianjin Natural Science Foundation of Key Project of China (Grant Nos. 16JCZDJC30700 and 18JCZDJC31200), and the 111 Project, China (Grant No. B16027). |
Corresponding Authors:
Yi Zhang
E-mail: yizhang@nankai.edu.cn
|
Cite this article:
Zhen-Wu Jiang(姜振武), Shou-Shuai Gao(高守帅), Si-Yu Wang(王思宇), Dong-Xiao Wang(王东潇), Peng Gao(高鹏), Qiang Sun(孙强), Zhi-Qiang Zhou(周志强), Wei Liu(刘玮), Yun Sun(孙云), Yi Zhang(张毅) Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation 2019 Chin. Phys. B 28 048801
|
[1] |
Li J, Kim S, Nam D, Liu X, Kim J, Cheong H, Liu W, Li H, Sun Y and Zhang Y 2017 Sol. Energy Mater. Sol. Cells 159 447
|
[2] |
Polizzotti A, Repins I L, Noufi R, Wei S H and Mitzi D B 2013 Energy Environ. Sci. 6 3171
|
[3] |
Mitzi D B, Gunawan O, Todorov T K, Wang K and Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421
|
[4] |
Walsh A, Chen S, Wei S H and Gong X G 2012 Adv. Energy Mater. 2 400
|
[5] |
Barkhouse D, Aaron R, Gunawan O, Gokmen T, Todorov T K and Mitzi D B 2012 Prog. Photovoltaics Res. Appl. 20 6
|
[6] |
Bag S, Gunawan O, Gokmen T, Zhu Y, Todorov T K and Mitzi D B 2012 Energy Environ. Sci. 5 7060
|
[7] |
Gao S, Jiang Z, Wu L, Ao J, Zeng Y, Sun Y and Zhang Y 2018 Chin. Phys. B 27 018803
|
[8] |
Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465
|
[9] |
Lee Y S, Gershon T, Gunawan O, Todorov T K, Gokmen T, Virgus Y and Guha S 2015 Adv. Energy Mater. 5 1401372
|
[10] |
Klenk R, Steigert A, Rissom T, Greiner D, Kaufmann C A, Unold T and Lux-Steiner M C 2014 Prog. Photovoltaics Res. Appl. 22 161
|
[11] |
Gautron E, Buffiére M, Harel S, Assmann L, Arzel L, Brohan L, Kessler J and Barreau N 2013 Thin Solid Films 535 175
|
[12] |
Yagioka T and Nakada T 2009 Appl. Phys. Express 2 072201
|
[13] |
Meyer B K, Polity A, Farangis B, He Y, Hasselkamp D and Wang C 2004 Appl. Phys. Lett. 85 4929
|
[14] |
Chua R H, Li X, Walter T, The L K, Hahn T, Hergert F and Wong L H 2016 Appl. Phys. Lett. 108 043505
|
[15] |
Grenet L, Grondin P, Coumert K, Karst N, Emieux F, Roux F, Fillon R, Altamura G, Fournier H, Faucher, P and Perraud S 2014 Thin Solid Films 564 375
|
[16] |
Neuschitzer M, Lienau K, Guc M, Barrio L C, Haass S, Prieto J M and Izquierdo-Roca 2016 J. Phys. D: Appl. Phys. 49 125602
|
[17] |
Li J, Liu X, Liu W, Wu L, Ge B, Lin S, Gao S, Zhou Z, Liu F, Sun Y, Ao J, Zhu H, Mai Y and Zhang Y 2017 Sol. RRL. 1 1700075
|
[18] |
Hsieh T M, Lue S J, Ao J, Sun Y, Feng W S and Chang L B 2014 J. Power Sources 246 443
|
[19] |
Steirer K X, Garris R L, Li J V, Dzara M J, Ndione P F, Ramanathan K, Repins I, Teeter G and Perkins C L 2015 Phys. Chem. Chem. Phys. 17 15355
|
[20] |
Palimar S, Bangera K V and Shivakumar G K 2013 Appl. Nanosci. 3 549
|
[21] |
Llican S, Caglar Y, Caglar M and Demirci B 2008 J. Optoelectron. Adv. Mater. 10 2592
|
[22] |
Pham A T T, Ta H K T, Liu Y R, Aminzare M, Wong D P, Nguyen T H, Pham N K, Le T B N, Seetawan T, Ju H, Cho S, Chen K H, Tran V C and Phan T B 2018 J. Alloys Compd. 747 156
|
[23] |
Benramache S, Benhaoua B and Bentrah H 2013 Nanostrut. Chem. 3 54
|
[24] |
Gonçalves G, Elangovan E, Barquinha P, Pereira L, Martins R and Fortunato E 2007 Thin Solid Films 515 8562
|
[25] |
Jani M, Raval D, Pati R K, Mukhopadhyay I and Ray A 2018 Bull. Mater. Sci. 41 22
|
[26] |
Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H and Mitzi D B 2014 Adv. Mater. 26 7427
|
[27] |
Jiang F, Ozaki C, Guna wan, Harada T, Tang Z, Minemoto T, Nose Y and Ikeda S 2016 Chem. Mater. 28 3283
|
[28] |
Liu Y, Sun Y and Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124
|
[29] |
Omer and Mohamed B 2015 Chin. Phys. Lett. 32 088801
|
[30] |
Sharbati S, Keshmiri S H, McGoffin J T and Geisthardt R 2015 Appl. Phys. A 118 1259
|
[31] |
Persson C, Platzer-Bjorkman C, Malmstrom J, Torndahl T and Edoff M 2006 Phys. Rev. Lett. 97 46403
|
[32] |
Grimm A, Kieven D, Klenk R, Lauermann I, Neisser A, Niesen T and Palm J 2011 Thin Solid Films 520 1330
|
[33] |
Huang T J, Yin X, Qi G and Gong H 2014 Phys. Status Solidi RRL. 08 735
|
[34] |
Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y and Kitagawa M 2001 Sol. Energy Mater. Sol. Cells 67 83
|
[35] |
Barreau N, Bernede J C, Marsillac S and Mokrani A 2002 J. Crystal Growth 235 439
|
[36] |
Revathi N, Prathap P, Subbaiah Y P V and Ramakrishna Reddy K T 2008 J. Phys. D: Appl. Phys. 41 155404
|
[37] |
Saadallah F, Jebbari N, Kammoun N and Yacoubi N 2011 Int. J. Photoenergy 1-4
|
[38] |
Khoshsirat N and Md Yunus N A 2016 J. Electron. Mater. 45 5721
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|