Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 048102    DOI: 10.1088/1674-1056/28/4/048102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane

Yuan Guo(郭源)1, Chunmei Tang(唐春梅)1, Xinbo Wang(王鑫波)1, Cheng Wang(王成)1, Ling Fu(付玲)2
1 College of Science, Hohai University, Nanjing 210098, China;
2 College of Agricultural Engineering, Nanyang Normal University, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province;Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China
Abstract  

Membrane technology has been used for H2 purification. In this paper, the systematic density functional simulations are conducted to study the separation of H2 from the impurity gases (H2, N2, H2O, CO, Cl2, and CH4) by the bilayer porous graphitic carbon nitride(g-C3N4) membrane. Theoretically, the bilayer g-C3N4 membrane with a diameter of about 3.25 Å should be a perfect candidate for H2 purification from these mixed gases, which is verified by the high selectivity (S) for H2 over other kinds of gases (3.43×1028 for H2/N2; 1.40×1028 for H2/H2O; 1.60×1026 for H2/CO; 4.30×1014 for H2/Cl2; 2.50×1055 for H2/CH4), and the permeance (P) of H2 (13 mol/m2·s·Pa) across the bilayer g-C3N4 membrane at 300 K, which should be of great potential in energy and environmental research. Our studies highlight a new approach towards the final goal of high P and high S molecular-sieving membranes used in simple structural engineering.

Keywords:  g-C3N4      gas separation      density functional      molecular dynamics simulation  
Received:  17 November 2018      Revised:  11 February 2019      Accepted manuscript online: 
PACS:  81.05.Rm (Porous materials; granular materials)  
  81.05.U- (Carbon/carbon-based materials)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: 

Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2018B19414), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161501), the Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2015-XCL-010), the National Natural Science Foundation of China (Grant Nos. 51776094 and 51406075), the Program of Henan Provincial Department of Education, China (Grant No. 16A330004), the Special Fund of Nanyang Normal University, China (Grant No. ZX2016003), the Science and Technology Program of Henan Department of Science and Technology, China (Grant No. 182102310609), and the Scientific Research and Service Platform Fund of Henan Province, China (Grant No. 2016151).

Corresponding Authors:  Chunmei Tang, Ling Fu     E-mail:  tcmnj@163.com;ful263@nenu.edu.cn

Cite this article: 

Yuan Guo(郭源), Chunmei Tang(唐春梅), Xinbo Wang(王鑫波), Cheng Wang(王成), Ling Fu(付玲) Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane 2019 Chin. Phys. B 28 048102

[1] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K and Antonietti M 2009 Nat. Mater. 8 76
[2] Cardoso S P, Azenha I S, Lin Z, Portugal I, Rodrigues A E and Silva C M 2018 Sep. Purif. Rev. 47 229
[3] Bojdys M J, Müller J O, Antonietti M and Thomas A 2008 Chem.-Eur. J. 14 8177
[4] Ockwig N W and Nenoff T M 2007 Chem. Rev. 107 4078
[5] Sedivy V M 2008 National Salt Conference
[6] Bai H and Yeh A C 1997 Ind. Eng. Chem. Res. 36 2490
[7] Bara J E, Gabriel C J, Hatakeyama E S, Carlisle T K, Lessmann S, Noble R D and Gin D L 2008 J. Membrane Sci. 321 3
[8] Bernardo P, Drioli E and Golemme G 2009 Ind. Eng. Chem. Res. 48 4638
[9] Spillman R W 1989 Chem. Eng. Prog. 85 41
[10] Yu M, Noble R D and Falconer J L 2011 Acc. Chem. Res. 44 1196
[11] Vos R M and Verweij H 1998 Science 279 1710
[12] Shiflett M B and Foley H C 1999 Science 285 1902
[13] Hong T, Chatterjee S, Mahurin S M, Fan F, Tian Z, Jiang D E, Long B K, Mays J W, Sokolov A P and Saito T 2017 J. Membrane Sci. 530 213
[14] Dong J, Lin Y S, Kanezashi M and Tang Z 2008 J. Appl. Phys. 104 13
[15] Oyama S T, Lee D, Hacarlioglu P and Saraf R F 2004 J. Membr Sci. 244 45
[16] Gates B C 1992 Catalytic Chemistry
[17] Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli C A and Passerone D 2010 Small 6 2266
[18] Hu W, Wu X, Lia Z and Yang J 2013 Phys. Chem. Chem. Phys. 15 5753
[19] Jiao Y, Du A, Hankel M, Zhu Z, Rudolphb V and Smith S C 2011 Chemi. Commun. 47 11843
[20] Winter M and Brodd R J 2004 Chem. Rev. 10 4245
[21] Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q and Cheng H M 2010 J. Am. Chem. Soc. 132 11642
[22] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[23] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
[24] Bunch J S, Verbridge S S, Alden J S, Zande A M, Parpia J M, Craighead H G and McEuen P L 2008 Nano Lett. 8 2458
[25] Leenaerts O, Partoens B and Peeters F M 2008 Appl. Phys. Lett. 93 193107
[26] Jiang D E, Cooper V R and Dai S P 2009 Nano. Lett. 9 4019
[27] Shan M, Xue Q Jing N Ling C, Zhang T, Yan Z and Zheng J 2012 Nanoscale 4 5477
[28] Fischbein M D and Drndić M 2008 Appl. Phys. Lett. 93 113107
[29] Du A and Smith S C 2010 J. Phys. Chem. Lett. 2 73
[30] Koenig S P, Wang L, Pellegrino J and Bunch J S S 2012 Nat. Nanotechnol. 7 728
[31] Zhu L, Xue Q Z, Li X F, Jin Y K, Zheng H X, Wu T T and Guo Q K 2015 Acs Appl. Mater. Inter. 7 28502
[32] Du H, Li J, Zhang J, Su G, Li X and Zhao Y S 2011 J. Phys. Chem. C 115 23261
[33] Zhang X, Tang C and Jiang Q 2016 Int. J. Hydrogen Energy 41 10776
[34] Zhu L, Xue Q, Li X, Wu T, Jin Y and Xing W 2015 J. Mater. Chem. A 3 21351
[35] Lu R, Meng Z, Rao D, Wang Y, Shi Q, Zhang Y, Kan E, Xiao C, Deng K I 2014 Nanoscale 6 9960
[36] Huang C, Wu H, Deng K Tangb W and Kan E 2014 Phys. Chem. Chem. Phys. 16 25755
[37] Kroke E, Schwarz M, Bordon E H, Kroll P, Noll B and Norman A D 2002 New. J. Chem. 26 508
[38] Fang L, Ohfuji H, Shinmei T and Irifune T 2011 Diam. Relat. Mater. 20 819
[39] Ji Y, Dong H, Lin H, Zhang L, Houa T and Li Y 2016 RSC Adv. 6 52377
[40] Jiao Y, Du A, Smith S C, Zhu Z and Qiao S Z 2015 J. Mater. Chem. A 3 6767
[41] Park H B, Jung C H Lee Y M Hill A J, Pas S J, Mudie S T, Wagner E V, Freeman B D and Cookson D J 2007 Science 318 254
[42] Zhu L, Jin Y, Xue Q, Li X, Zheng H, Wu T and Ling C 2016 J. Mater. Chem. A 4 15015
[43] Chang X, Zhu L, Xue Q, Li X, Guo T, Li X and Ma M 2018 J. CO2 Util. 26 294
[44] Du N, Park H B, Robertson G P, Dal-Cin M M, Visser T, Scoles L and Guiver M D 2011 Nat. Mater. 10 372
[45] Kesting R E, Fritzsche A K, Murphy M K, Cruse C A, Handermann A C, Malon R F and Moore 1990 J. Appl. Polym. Sci. 40 1557
[46] Robeson L M 1991 J. Membr. Sci. 62 165
[47] Wang X, Mehandzhiyski A Y, Arstad B, Van Aken K L, Mathis T S, Gallegos A, Tian Z, Ren D, Sheridan E, Grimes B A, Jiang D E, Wu J, Gogotsi Y and Chen D 2017 J. Am. Chem. Soc. 139 18681
[48] Ackern F V, Krasemann L and Tieke B 1998 Thin Solid Films 327 762
[49] Bartolomei M and Giorgi G 2016 ACS Appl. Mater. Interfaces 8 27996
[50] Gadipelli S and Guo Z X 2015 Prog. Mater. Sci. 69 1
[51] Zhang X, Xie X, Wang H, Zhang J, Pan B and Xie Y 2013 J. Am. Chem. Soc. 135 18
[52] Li Y, Zhou Z, Shena P and Chen Z 201 Chem. Commun. 46 3672
[53] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[54] Delley B 2000 J. Chem. Phys. 113 7756
[55] Krasnov P O, Ding F, Singh, A K and Yakobson B I 2007 J. Phys. Chem. C 111 17977
[56] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[57] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[58] Semiempirical G S 2006 J. Comput. Chem. 27 1787
[59] Si L and Tang C 2017 Int. J. Hydrogen Energy 42 16611
[60] Wang X, Tang C, Zhu W, Zhou X, Zhou Q and Cheng C 2018 J. Physl Chem. C 122 9654
[61] Wu F, Liu Y, Yu G, Shen D, Wang Y and Kan E 2012 J. Phys. Chem. Lett. 3 3330
[62] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[63] Zhou Q, Chen Q, Tong Y and Wang J 2016 Angew. Chem. Int. Ed 128 11609
[64] Wu T, Xue Q, Ling C, Shan M, Liu Z, Tao Y and Li X 2014 J. Phys. Chem. C 118 7369
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[11] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[12] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[13] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[14] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[15] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
No Suggested Reading articles found!