Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 046102    DOI: 10.1088/1674-1056/28/4/046102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Delta-doped quantum wire tunnel junction for highly concentrated solar cells

Ali Bahrami1, Mahyar Dehdast2, Shahram Mohammadnejad2, Habib Badri Ghavifekr3
1 Optoelectronics and Nanophotonics Research Laboratory(ONRL), Electrical and Electronics Engineering Department, Sahand University of Technology, Tabriz, Iran;
2 Nanoptronics Research Center, Electrical and Electronics Engineering Department, Iran University of Science and Technology, Tehran, Iran;
3 Microelectronics Research Laboratory, Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
Abstract  

We propose a novel structure for tunnel junction based on delta-doped AlGaAs/GaAs quantum wires. Higher spatial confinement of quantum wires alongside the increased effective doping concentration in the delta-doped regions extremely increase the peak tunneling current and enhance the performance of tunnel junction. The proposed structure can be used as tunnel junction in the multijunction solar cells under the highest possible thermodynamically limited solar concentration. The combination of the quantum wire with the delta-doped structure can be of benefit to the solar cells' advantages including higher number of sub-bands and high degeneracy. Simulation results show a voltage drop of 40 mV due to the proposed tunnel junction used in a multijunction solar cell which presents an extremely low resistance to the achieved peak tunneling current.

Keywords:  delta-doping      quantum wire      solar cell      tunnel junction  
Received:  02 December 2018      Revised:  15 February 2019      Accepted manuscript online: 
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  68.65.La (Quantum wires (patterned in quantum wells))  
  88.40.H- (Solar cells (photovoltaics))  
  73.43.Jn (Tunneling)  
Corresponding Authors:  Ali Bahrami     E-mail:  bahrami@sut.ac.ir

Cite this article: 

Ali Bahrami, Mahyar Dehdast, Shahram Mohammadnejad, Habib Badri Ghavifekr Delta-doped quantum wire tunnel junction for highly concentrated solar cells 2019 Chin. Phys. B 28 046102

[1] Bahrami A, Mohammadnejad S and Abkenar N J 2014 Chin. Phys. B 23 028803
[2] Algora C, Ortiz E, Rey-Stolle I, Diaz V, Pena R, Andreev V M, Khvostikov V P and Rumyantsev V D 2001 IEEE Trans. Electron Dev. 48 840
[3] Samberg J P Carlin C Z, Bradshaw G K, Colter P C, Harmon J L, Allen J B, Hauser J R and Bedair S M 2013 Appl. Phys. Lett. 103 103503
[4] Barnham K and Vvedensky D 2001 Low-Dimensional Semiconductor Structures: Fundamentals and Device Applications (Cambridge: Cambridge University Press)
[5] Lin S D and Lee C P 2003 J. Appl. Phys. 93 2952
[6] Lumb M P, Yakes M K, Gonzalez M, Vurgaftman I, Bailey C G, Hoheisel R and Walters R J 2012 Appl. Phys. Lett. 100 213907
[7] Zide J M O, Kleiman-Shwarsctein A, Strandwitz N C, Zimmerman J D, Steenblock-Smith T, Gossard A C, Forman A, Ivanovskaya A and Stucky G D 2006 Appl. Phys. Lett. 88 162103
[8] Vos A D 1980 J. Phys. D: Appl. Phys. 13 839
[9] Smestad G, Ries H, Winston R and Yablonovitch E 1990 Solar Energy Mater. 21 99
[10] Mohammadnejad S, Abkenar N J and Bahrami A 2013 Indian J. Phys. 87 971
[11] Schubert E F 1990 J. Vac. Sci. Technol. A 8 2980
[12] DeSalvo G C 1993 J. Appl. Phys. 74 4207
[13] Wang T, Saeki H, Bai J, Shirahama T, Lachab M, Sakai S and Eliseev P 2000 Appl. Phys. Lett. 76 1737
[14] Schubert E F 1994 Semicond. Semimetals 40 1
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[3] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[4] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[5] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[6] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[7] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[10] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[11] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[12] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[13] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[14] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[15] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
No Suggested Reading articles found!