Special Issue:
SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
|
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies |
Prev
Next
|
|
|
Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser |
Tong Zhao(赵彤)1,2,†, Zhi-Ru Shen(申志儒)1,2, Wen-Li Xie(谢文丽)1,2, Yan-Qiang Guo(郭龑强)1,2, An-Bang Wang(王安帮)1,2,3, and Yun-Cai Wang(王云才)3,4,† |
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China; 2 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China; 3 Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou 510006, China; 4 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China |
|
|
Abstract The sensitivity to fault reflection is very important for larger dynamic range in fiber fault detection technique. Using time delay signature (TDS) of chaotic laser formed by optical feedback can solve the sensitivity limitation of photodetector in fiber fault detection. The TDS corresponds to the feedback position and the fault reflection can be detected by the laser diode. The sensitivity to feedback level of circular-side hexagonal resonator (CSHR) microcavity laser is numerically simulated and the feedback level boundaries of each output dynamic state are demonstrated. The peak level of TDS is utilized to analyze the sensitivity. The demonstration is presented in two aspects:the minimum feedback level when the TDS emerges and the variation degree of TDS level on feedback level changing. The results show that the CSHR microcavity laser can respond to the feedback level of 0.07%, corresponding to -63-dB feedback strength. Compared to conventional distributed feedback laser, the sensitivity improves almost 20 dB due to the shorter internal cavity length of CSHR microcavity laser. Moreover, 1% feedback level changing will induce 1.001 variation on TDS level, and this variation degree can be influenced by other critical internal parameters (active region side length, damping rate, and linewidth enhancement factor).
|
Received: 21 July 2021
Revised: 02 October 2021
Accepted manuscript online: 22 October 2021
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
05.45.Tp
|
(Time series analysis)
|
|
06.30.-k
|
(Measurements common to several branches of physics and astronomy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB1803500), the National Natural Science Foundation of China (Grant Nos. 61705160, 61961136002, 61822509, and 61875147), the "1331 Project" Key Innovative Research Team of Shanxi Province, China, and the National Defense Basic Scientific Research Project (Grant No. WDYX19614260203). |
Corresponding Authors:
Tong Zhao, Yun-Cai Wang
E-mail: zhaotong.tyut@outlook.com;wangyc@gdut.edu.cn
|
Cite this article:
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才) Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser 2021 Chin. Phys. B 30 120513
|
[1] Kleinman D A and Kisliuk P P 1962 Bell Sys. Tech. 41 453 [2] Fleming M W and Mooradian A 1981 IEEE J. Quantum Electron. 17 44 [3] Lenstra D, van Schaijk T T M and Williams K A 2019 IEEE J. Sel. Top. Quantum Electron. 25 1502113 [4] Lang R and Kobayashi K 1980 IEEE J. Quantum Electron. 16 347 [5] Ohtsubo J 2012 Semiconductor lasers: stability, instability and chaos, 3rd edn. (New York: Springer) pp. 75–168[6] Soriano M C, Garcia-Ojalvo J, Mirasso C R and Fischer I 2013 Rev. Mod. Phys. 85 421[7] Sciamanna M and Shore K A 2015 Nat. Photon. 9 151[8] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K and Davis P 2008 Nat. Photon. 2 728 [9] Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S and Pan W 2014 Opt. Express 22 6634 [10] Sang L X, Guo Y Y, Liu H F, Zhang J G and Wang Y C 2021 Opt. Express 29 7100 [11] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343 [12] Wang L S, Mao X X, Wang A B, Wang Y C, Gao Z S, Li S S and Yan L S 2020 Opt. Lett. 45 4762 [13] Porte X, Soriano M C, Brunner D and Fischer I 2016 Opt. Lett. 41 2871 [14] Gao H, Wang A B, Wang L S, Jia Z W, Guo Y Y, Gao Z S, Yan L S, Qin Y W and Wang Y C 2021 Light:Sci. Appl. 10 172 [15] Appeltant L, Soriano M C, Van der Sande G, Danckaert J, Massar S, Dambre J, Schrauwen B, Mirasso C R and Fischer I 2011 Nat. Commun. 2 468 [16] Argyris A, Schwind J and Fischer I 2021 Sci. Rep. 11 6701 [17] Wang Y C, Wang B J and Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636 [18] Zhang M J and Wang Y C 2021 J. Lightw. Technol. 39 3711 [19] Hao J, Gong M L, Du P F, Lu B J, Zhang F, Zhang H T and Fu X 2016 Chin. Phys. B 25 074207 [20] Argyris A, Hamacher M, Chlouverakis K E, Bogris A and Syvridis D 2008 Phys. Rev. Lett. 100 194101 [21] Zhang M J, Niu Y N, Zhao T, Zhang J Z, Liu Y, Xu Y H, Meng J, Wang Y C and Wang A B 2018 Chin. Phys. B 27 050502 [22] Rontani D, Locquet A, Sciamanna M and Citrin D S 2007 Opt. Lett. 23 2960 [23] Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F and Wang A B 2017 Opt. Express 25 10911 [24] Jiang N, Wang C, Xue C P, Li G L, Lin S Q and Qiu K 2017 Opt. Express 25 14359 [25] Ma Y T, Xiang S Y, Guo X X, Song Z W, Wen A J and Hao Y 2020 Opt. Express 28 1665 [26] Ding L, Wu J G, Xia G Q, Shen J T, Li N Y and Wu Z M 2011 Acta Phys. Sin. 60 014210 (in Chinese) [27] Zhang Y N, Feng Y L, Wang X Q, Zhao Z M, Gao C and Yao Z H 2020 Acta Phys. Sin. 69 090501 (in Chinese) [28] Zhao T, Han H, Zhang J G, Liu X L, Chang X M, Wang A B and Wang Y C 2015 IEEE Photon. J. 7 6803909 [29] Wang Y X, Jia Z W, Gao Z S, Xiao J L, Wang L S, Wang Y C, Huang Y Z and Wang A B 2020 Opt. Express 28 18507 [30] Xiao Z X, Huang Y Z, Yang Y D, Xiao J L and Ma X W 2017 Opt. Lett. 42 1309 [31] Dong J X, Zhuang J P and Chan S C 2017 Opt. Lett. 42 4291 [32] Acket G A, Lenstra D, Boef A J D and Verbeek B H 1984 IEEE J. Quantum Electron. 20 1163 [33] Helms J and Petermann K 1990 IEEE J. Quantum Electron. 26 55523 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|