Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014206    DOI: 10.1088/1674-1056/ac1335
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings

Jiankai Zhu(朱剑凯)1, Xiangxian Wang(王向贤)1,†, Yunping Qi(祁云平)2, and Jianli Yu(余建立)3
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
2 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
3 School of Electronic Engineering, Chaohu University, Chaohu 238000, China
Abstract  We propose a simple one-dimensional grating coupling system that can excite multiple surface plasmon resonances for refractive index (RI) sensing with self-reference characteristics in the near-infrared band. Using theoretical analysis and the finite-difference time-domain method, the plasmonic mechanism of the structure is discussed in detail. The results show that the excited resonances are independent of each other and have different fields of action. The mode involving extensive interaction with the analyte environment achieves a high sensitivity of 1236 nm/RIU, and the figure of merit (FOM) can reach 145 RIU-1. Importantly, the mode that is insensitive to the analyte environment exhibits good self-reference characteristics. Moreover, we discuss the case of exchanging the substrate material with the analyte environment. Promising simulation results show that this RI sensor can be widely deployed in unstable and complicated environments.
Keywords:  self-reference      plasmonic sensor      functional layer      sensitivity  
Received:  24 May 2021      Revised:  30 June 2021      Accepted manuscript online:  12 July 2021
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.-p (Wave optics)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61865008).
Corresponding Authors:  Xiangxian Wang     E-mail:  wangxx869@lut.edu.cn

Cite this article: 

Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立) Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings 2022 Chin. Phys. B 31 014206

[1] Gao H, Zhao X, Zhang H, Chen J, Wang S and Yang H 2020 J. Electron. Mater. 49 5248
[2] Guan S, Li R, Sun X, Xian T and Yang H 2020 Mater. Technol.
[3] Wang Y, Sun X, Xian T, Liu G and Yang H 2021 Opt. Mater. 113 110853
[4] Liu C, Wang J, Wang F, Su W, Yang L, Lv J, Fu G, Li X, Liu Q, Sun T and Chu P K 2020 Opt. Commun. 464 125496
[5] Liu C, Yang L, Liu Q, Wang F, Sun Z, Sun T, Mu H and Chu P K 2018 Plasmonics 13 779
[6] Qi Y, Zhang B, Liu C and Deng X 2020 IEEE Access 8 116675
[7] Dong G, Liu R, Lv B, Lv T, Li Y, Li P, Zhu Z, Guan C and Shi J 2020 Photonics and Nanostructures-Fundamentals and Applications 40 100792
[8] Jiang L, Yuan C, Li Z, Su J, Yi Z, Yao W, Wu P, Liu Z, Cheng S and Pan M 2021 Diamond Relat. Mater. 111 108227
[9] Liu Z, Liu G, Fu G, Liu X and Wang Y 2016 Opt. Express 24 5020
[10] Liu Z, Tang P, Liu X, Yi Z, Liu G, Wang Y and Liu M 2019 Nanotechnology 30 305203
[11] Qi Y, Zhang Y, Liu C, Zhang T, Zhang B, Wang L, Deng X, Wang X and Yu Y 2020 Nanomaterials 10 533
[12] Zhang Y, Yi Z, Wang X, Chu P, Yao W, Zhou Z, Cheng S, Liu Z, Wu P, Pan M and Yi Y 2021 Physica E 127 114526
[13] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[14] Chu Y Z and Crozier K B 2009 Opt. Lett. 34 244
[15] Yang F, Chen X, Cho E-H, Lee C S, Jin P and Guo L J 2015 Appl. Phys. Express 8 062004
[16] Burtsev V, Miliutina E, Erzina M, Kalachyova Y, Elashnikov R, Svorcik V and Lyutakov O 2019 J. Phys. Chem. C 123 30492
[17] Ren X, Ren K and Ming C 2018 Sensors 18 1376
[18] Cao J, Sun Y, Kong Y and Qian W 2019 Sensors 19 405
[19] Sun P, Zhou C, Jia W, Wang J, Xiang C, Xie Y and Zhao D 2020 Opt. Commun. 459 124946
[20] Coskun A F, Cetin A E, Galarreta B C, Alvarez D A, Altug H and Ozcan A 2014 Sci. Rep. 4 6789
[21] Guner H, Ozgur E, Kokturk G, Celik M, Esen E, Topal A E, Ayas S, Uludag Y, Elbuken C and Dana A 2017 Sens. Actuators B 239 571
[22] Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H and Qi Y 2019 Chin. Phys. B 28 044201
[23] Chen J, Nie H, Peng C, Qi S, Tang C, Zhang Y, Wang L and Park G S 2018 J. Lightwave Technol. 36 3481
[24] Abutoama M and Abdulhalim I 2015 Opt. Express 23 28667
[25] Wang Y J, Sun C W, Li H Y, Gong Q H and Chen J J 2017 Nanoscale 9 11085
[26] Sun P, Zhou C, Jia W, Wang J, Xiang C, Xie Y and Zhao D 2020 J. Phys. D: Appl. Phys. 53 145101
[27] Kohandani R and Saini S S 2020 Plasmonics 15 1359
[28] Wang X, Zhu J, Xu Y, Qi Y, Zhang L, Yang H and Yi Z 2021 Chin. Phys. B 30 024207
[29] Sarkar M, Besbes M, Moreau J, Bryche J F, Olivero A, Barbillon G, Coutrot A L, Bartenlian B and Canva M 2015 Acs Photon. 2 237
[30] Lee T W and Gray K S 2005 Appl. Phys. Lett. 86 141105
[31] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[32] Aspnes D E and Studna A A 1983 Phys. Rev. B 27 985
[33] Iqbal T and Afsheen S 2017 Plasmonics 12 19
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[3] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[4] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[5] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[6] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[7] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[8] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
[9] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[10] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[11] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[12] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[13] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[14] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[15] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
No Suggested Reading articles found!