ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Electron self-injection and acceleration in a hollow plasma channel driven by ultrashort intense laser pulses |
Suhui Deng(邓素辉), Mingping Liu(刘明萍) |
School of Information Engineering, Nanchang University, Nanchang 330031, China |
|
|
Abstract The self-injection and acceleration of electrons in a hollow plasma channel driven by ultrashort intense laser pulses is investigated by Particle-in-Cell (PIC) simulations. It is shown that electrons from the bubble sheath will be self-injected into the hollow plasma channel and move radially towards the channel border due to the lack of focusing force in the hollow plasma channel. After several reflections near the channel wall by the strong focusing force, a self-injected electron bunch can be confined in the hollow plasma channel and quasi-phase-stably accelerated forward for the whole laser-plasma interaction process. These electrons using optical and plasma-related self-injection method can be self-organized to remain in the rear of the bubble, where the accelerating electric field is transversely uniform and nearly plateau along the propagation axis. Therefore, the self-injected electron bunch can be accelerated in a steady state without obvious oscillation and has a high quality with narrow energy spread and low divergence.
|
Received: 16 November 2018
Revised: 28 January 2019
Accepted manuscript online:
|
PACS:
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
42.25.Gy
|
(Edge and boundary effects; reflection and refraction)
|
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11147005, 61665006, and 61865011) and the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 20151BAB202018, 20161BAB212041, and 20162BCB23012). |
Corresponding Authors:
Mingping Liu
E-mail: mpliu@ncu.edu.cn
|
Cite this article:
Suhui Deng(邓素辉), Mingping Liu(刘明萍) Electron self-injection and acceleration in a hollow plasma channel driven by ultrashort intense laser pulses 2019 Chin. Phys. B 28 044101
|
[1] |
Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
|
[2] |
Tajima T D and Dawson J M 1979 Phys. Rev. Lett. 43 267
|
[3] |
Geddes C G, Toth C S, Van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J and Leemans W P 2004 Nature 431 538
|
[4] |
Maiolino R, Schneider R, Oliva E, Bianchi S, Ferrara A, Mannucci F, Pedani M and Sogorb M R 2004 Nature 431 533
|
[5] |
Mangles S P, Murphy C D, Najmudin Z, Thomas A G, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R and Krushelnick K 2004 Nature 431 535
|
[6] |
Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Toth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G and Esarey E 2014 Phys. Rev. Lett.113 245002
|
[7] |
Pukhov A and Meyer-ter-Vehn J 2002 Appl. Phys. B 74 355
|
[8] |
Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A and Lefebvre E 2013 Rev. Mod. Phys. 85 1
|
[9] |
Cipiccia S, Islam M R, Ersfeld B, Shanks R P, Brunetti E, Vieux G,Yang X, Issac R C, Wiggins S M, Welsh G H, Anania M-P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M and Jaroszynski D A 2011 Nat. Phys. 7 867
|
[10] |
Shen Z C, Chen M, Zhang G B, Luo J, Weng S M, Yuan X H, Liu F and Sheng Z M 2017 Chin. Phys. B 26 115204
|
[11] |
Miller R J D 2014 Science 343 1108
|
[12] |
Bulanov S V and Prokhorov A M 2006 Plasma Phys. Controlled Fusion 48 B29
|
[13] |
Malka V, Faure J and Gauduel Y A 2010 Mutat. Res. 704 142
|
[14] |
Pukhov A, Gordienko S, Kiselev S and Kostyukov I 2004 Plasma Phys. Controlled Fusion 46 B179
|
[15] |
Kostyukov I, Pukhov A and Kiselev S 2004 Phys. Plasmas 11 5256
|
[16] |
Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A and Silva L O 2007 Phys. Rev. Spec. Top. -Accel. Beams 10 061301
|
[17] |
Wang G H, W X F and Dong K G 2012 Acta Phys. Sin. 61 165201 (in Chinese)
|
[18] |
Wang F C 2016 Chin. Phys. B 25 054102
|
[19] |
Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y and Malka V 2006 Nature 444 737
|
[20] |
Chen M, Sheng Z M, Ma Y Y and Zhang J 2006 J. Appl. Phys. 99 056109
|
[21] |
McGuffey C, Thomas A G, Schumaker W, Matsuoka T, Chvykov V, Dollar F J, Kalintchenko G, Yanovsky V, Maksimchuk A, Krushelnick K, Bychenkov V Y, Glazyrin I V and Karpeev A V 2010 Phys. Rev. Lett. 104 025004
|
[22] |
Pak A, Marsh K A, Martins S F, Lu W, Mori W B and Joshi C 2010 Phys. Rev. Lett. 104 025003
|
[23] |
Zeng M, Chen M, Sheng Z M, Mori W B and Zhang J 2014 Phys. Plasmas 21 030701
|
[24] |
Suk H, Barov N, Rosenzweig J B and Esarey E 2001 Phys. Rev. Lett. 86 1011
|
[25] |
Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, van Tilborg J, Osterhoff J, Esarey E, Toth C and Leemans W P 2011 Nat. Phys. 7 862
|
[26] |
Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B and Hooker S M 2006 Nat. Phys. 2 696
|
[27] |
Geng P, Lv W, Li X, Tang R and Xue J 2018 Chin. Phys. B 27 035201
|
[28] |
Pukhov A, Jansen O, Tueckmantel T, Thomas J and Kostyukov I Y 2014 Phys. Rev. Lett. 113 245003
|
[29] |
Schroeder C B, Esarey E, Benedetti C and Leemans W P 2013 Phys. Plasmas 20 080701
|
[30] |
Thomas J, Kostyukov I Y, Pronold J, Golovanov A and Pukhov A 2016 Phys. Plasmas 23 053108
|
[31] |
Yi L, Shen B, Lotov K, Ji L, Zhang X, Wang W, Zhao X, Yu Y, Xu J, Wang X, Shi Y, Zhang L, Xu T and Xu Z 2013 Phys. Rev. Spec. Top. -Accel. Beams 16 071301
|
[32] |
Yi L, Shen B, Ji L, Lotov K, Sosedkin A, XiaomeiZhang, Wang W, Xu J, Shi Y, Zhang L and Xu Z2014 Sci. Rep. 4 4171
|
[33] |
Gessner S, Adli E, Allen J M, An W, Clarke C I, Clayton C E, Corde S, Delahaye J P, Frederico J, Green S Z, Hast C, Hogan M J, Joshi C, Lindstrom C A, Lipkowitz N, Litos M, Lu W, Marsh K A, Mori W B, O'Shea B, Vafaei-Najafabadi N, Walz D, Yakimenko V and Yocky G 2016 Nat. Commun. 7 11785
|
[34] |
Nieter C and Cary J R 2014 J. Comput. Phys. 196 448
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|