Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028504    DOI: 10.1088/1674-1056/23/2/028504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Large-scale SiO2 photonic crystal for high efficiency GaN LEDs by nanospherical-lens lithography

Wu Kui (吴奎)a b, Wei Tong-Bo (魏同波)a, Lan Ding (蓝鼎)c, Zheng Hai-Yang (郑海洋)a, Wang Jun-Xi (王军喜)a, Luo Yi (罗毅)b, Li Jin-Min (李晋闽)a
a Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b Tsinghua National Laboratory for Information Science and Technology/State Key Laboratory on Integrated Optoelectronics, Tsinghua University, Beijing 100084, China;
c National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Wafer-scale SiO2 photonic crystal (PhC) patterns (SiO2 air-hole PhC, SiO2-pillar PhC) on indium tin oxide (ITO) layer of GaN-based light-emitting diode (LED) are fabricated via novel nanospherical-lens lithography. Nanoscale polystyrene spheres are self-assembled into a hexagonal closed-packed monolayer array acting as convex lens for exposure using conventional lithography instrument. The light output power is enhanced by as great as 40.5% and 61% over those of as-grown LEDs, for SiO2-hole PhC and SiO2-pillar PhC LEDs, respectively. No degradation to LED electrical properties is found due to the fact that SiO2 PhC structures are fabricated on ITO current spreading electrode. For SiO2-pillar PhC LEDs, which have the largest light output power in all LEDs, no dry etching, which would introduce etching damage, was involved. Our method is demonstrated to be a simple, low cost, and high-yield technique for fabricating the PhC LEDs. Furthermore, the finite difference time domain simulation is also performed to further reveal the emission characteristics of LEDs with PhC structures.
Keywords:  InGaN light-emitting diodes (LEDs)      photonic crystal      nanosphere lithography      FDTD simulation  
Received:  29 August 2013      Revised:  22 September 2013      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  42.70.Qs (Photonic bandgap materials)  
  81.16.Nd (Micro- and nanolithography)  
  83.10.Rs (Computer simulation of molecular and particle dynamics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB301902).
Corresponding Authors:  Wei Tong-Bo     E-mail:  tbwei@semi.ac.cn
About author:  85.60.Jb; 42.70.Qs; 81.16.Nd; 83.10.Rs

Cite this article: 

Wu Kui (吴奎), Wei Tong-Bo (魏同波), Lan Ding (蓝鼎), Zheng Hai-Yang (郑海洋), Wang Jun-Xi (王军喜), Luo Yi (罗毅), Li Jin-Min (李晋闽) Large-scale SiO2 photonic crystal for high efficiency GaN LEDs by nanospherical-lens lithography 2014 Chin. Phys. B 23 028504

[1] Liu N, Liu H, Zhu S and Giessen H 2009 Nat. Photon. 3 157
[2] Lu Y, Yang Z J, Pan Y B, Xu K, Hu X D, Zhang B and Zhang G Y 2006 Chin. Phys. Lett. 23 256
[3] Zhang J M, Zou D S, Xu C, Zhu Y X, Liang T, Da X L and Shen G D 2007 Chin. Phys. 16 1135
[4] Yang L, Ma X H, Feng Q and Hao Y 2008 Chin. Phys. B 17 2696
[5] Wierer J J, David A and Megens M M 2009 Nat. Photon. 3 163
[6] Zhang Y, Zheng H, Wei T, Yang H, Li J, Yi X, Song X, Wang G and Li J 2012 Opt. Express 20 6808
[7] Lin Y S and Yeh J A 2011 Appl. Phys. Express 4 092103
[8] Sim J I, Lee B G, Yang W J, Yoon H D and Kim T G 2011 Jpn. J. Appl. Phys. 50 2101
[9] Li K and Choi H 2011 J. Appl. Phys. 110 053104
[10] Ng W, Leung C, Lai P and Choi H 2008 Nanotechnology 19 255302
[11] Kwon M K, Kim J Y, Kim K S, Jung G Y, Lim W, Kim S T and Park S J 2013 ECS J. Solid State Sci. Technol. 2 P13
[12] Oh M S, Kwon M K, Park I K, Baek S H, Park S J, Lee S and Jung J 2006 J. Cryst. Growth 289 107
[13] Kim D H, Cho C O, Roh Y G, Jeon H, Park Y S, Cho J, Im J S, Sone C, Park Y and Choi W J 2005 Appl. Phys. Lett. 87 203508
[14] Wildeson I H, Colby R, Ewoldt D A, Liang Z, Zakharov D N, Zaluzec N J, García E A, Stach R E and Sands T D 2010 J. Appl. Phys. 108 044303
[15] Cho H K, Jang J, Choi J H, Choi J, Kim J, Lee J S, Lee B, Choe Y H, Lee K D and Kim S H 2006 Opt. Express 14 8654
[16] Wei T, Wu K, Lan D, Yan Q, Chen Y, Du C, Wang J, Zeng Y and Li J 2012 Appl. Phys. Lett. 101 211111
[17] Oder T, Kim K, Lin J and Jiang H 2004 Appl. Phys. Lett. 84 466
[18] Lee Y J, Kim S H, Huh J, Kim G H, Lee Y H, Cho S H, Kim Y C and Do Y R 2003 Appl. Phys. Lett. 82 3779
[19] Fan S, Villeneuve P R, Joannopoulos J and Schubert E 1997 Phys. Rev. Lett. 78 3294
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[8] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[12] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!