Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 015205    DOI: 10.1088/1674-1056/26/1/015205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure

Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云)
Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China
Abstract  Thermal and induced flow velocity characteristics of radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins. After several seconds (typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of kHz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s.
Keywords:  radio frequency discharge      temperature distribution      induced flow velocity      plasma aerodynamic actuation  
Received:  09 July 2016      Revised:  21 September 2016      Accepted manuscript online: 
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  47.80.Jk (Flow visualization and imaging)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472306, 51407197, and 51507187).
Corresponding Authors:  Hui-min Song     E-mail:  min_cargi@sina.com

Cite this article: 

Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云) Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure 2017 Chin. Phys. B 26 015205

[1] Roth J R 2003 Phys. Plasmas 10 2117
[2] Patel M P, Ng T T and Vasudevan S 2007 J. Aircraft 44 1264
[3] Li Y H, Wu Y, Zhu J Q, Zhou M, Su C B, Zhang X W and Zhu J Q 2010 Exp. Fluids 48 1015
[4] Leonov S, Bityurin V, Klimov A, Kolesnichenko Y and Yuriev A 2001 32th AIAA Plasmadynamics and Lasers Conference, June 11-14, 2001, Anaheim, SUA, p. 057
[5] Leonov S and Yarantsev D A 2008 J. Propul. Power 24 1168
[6] Carlo A B, Andrea C, Chiara L, Gabriele N, Alessandro G and Roberto P 2010 41st Plasmadynamics and Lasers Conference, June 28-July 1, 2010, Chicago, USA, p. 4763
[7] Joussot R, Hong D, Rabat H, Boucinha V, Weber R R and Leroy C A 2010 40th Fluid Dynamics Conference and Exhibit, June 28-July 1, 2010, Chicago, USA, p. 5102
[8] Dong B, Bauchire J M, Pouvesle J M, Magnier P and Hong D 2008 J. Phys. D:Appl. Phys. 41 155201
[9] Rakshit T, Nicolas B, Eric M, Matthieu F, Gildas L and Eva D 2014 J. Phys. D:Appl. Phys. 47 255203
[10] Scott A S, James M, Charles D J, Roger L K and James R H 2009 AIAA J. 47 1107
[11] Duchmann A, Grundmann S and Tropea C 2013 Exp. Fluids 54 1461
[12] Wang J, LI Y H, Chen B Q, Su C B, Song H M and Wu Y 2009 39th AIAA Fluid Dynamics Conference and Exhibite, June 22-25, 2009, San Antonio, USA, p. 4286
[13] Debien A, Benard N and Moreau E 2012 J. Phys. D:Appl. Phys. 45 215201
[14] Dedrick J, Im S, Cappelli M, Boswell R W and Charles C 2013 IEEE Trans. Plasma Sci. 41 3275
[15] Joussot R, Lago V and Parisse J D 2015 Exp. Fluids 56 102
[16] Kriegseis J, Möller B, Grundmann S and Tropea C 2011 J. Electrostat. 69 302
[17] Wang W L, Song H M, Li J, Jia M, Wu Y and Jin D 2016 Chin. Phys. B 25 045203
[18] Forte M, Jolibois J, Pons J, Moreau E, Touchard G and Cazalens M 2007 Exp. Fluids 43 917
[19] Menier E, Leger L, Depussay E, Lago V and Artana G 2007 J. Phys D:Appl. Phys. 40 695
[20] Leger L and Depussay E 2012 Exp. Fluids 53 699
[21] Dedrick J, Boswell R W, Audier P, Rabat H, Hong D and Charles C 2011 J. Phys. D:Appl. Phys. 44 205202
[1] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[2] Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
Guang-Ming Guo(郭广明), Qin Luo(罗琴), Lin Zhu(朱林), Yi-Xiang Bian(边义祥). Chin. Phys. B, 2019, 28(6): 064702.
[3] Thermal analysis of GaN-based laser diode mini-array
Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2018, 27(9): 094208.
[4] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[5] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[6] Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor
Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐). Chin. Phys. B, 2018, 27(10): 108101.
[7] Two-dimensional thermal illusion device with arbitrary shape based on complementary media
Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成). Chin. Phys. B, 2017, 26(10): 104403.
[8] Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2017, 26(10): 104402.
[9] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[10] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[11] Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation
Kang Chen(陈康) and Hua Liang(梁华). Chin. Phys. B, 2016, 25(2): 024703.
[12] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
[13] An RLC interconnect analyzable crosstalk model considering self-heating effect
Zhu Zhang-Ming(朱樟明) and Liu Shu-Bin(刘术彬) . Chin. Phys. B, 2012, 21(2): 028401.
[14] Determination of temperature distribution and control parameter in a two-dimensional parabolic inverse problem with overspecified data
Li Fu-Le(李福乐) and Zhang Hong-Qian(张洪谦) . Chin. Phys. B, 2011, 20(10): 100201.
[15] A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect
Zhu Zhang-Ming(朱樟明),Li Ru(李儒), Hao Bao-Tian(郝报田), and Yang Yin-Tang(杨银堂) . Chin. Phys. B, 2009, 18(11): 4995-5000.
No Suggested Reading articles found!