ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model |
Chengcheng Liu(刘成成)1, Rui Dong(东蕊)1, Boyi Li(李博艺)2, Ying Li(李颖)2, Feng Xu(徐峰)2, Dean Ta(他得安)2,3, Weiqi Wang(王威琪)2 |
1 Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
2 Department of Electronic Engineering, Fudan University, Shanghai 200433, China;
3 State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433 China |
|
|
Abstract The goal of this study is to analyze the statistics of the backscatter signal from bovine cancellous bone using a Nakagami model and to evaluate the feasibility of Nakagami-model parameters for cancellous bone characterization. Ultrasonic backscatter measurements were performed on 24 bovine cancellous bone specimens in vitro and the backscatter signals were compensated for the frequency-dependent attenuation prior to the envelope detection. The statistics of the backscatter envelope were modeled using the Nakagami distribution. Our results reveal that the backscatter envelope mainly followed pre-Rayleigh distributions, and the deviations of the backscatter envelope from Rayleigh distribution decreased with increasing bone density. The Nakagami shape parameter (i.e., m) was significantly correlated with bone densities (R=0.78-0.81, p<0.001) and trabecular microstructures (|R|=0.46-0.78, p<0.05). The scale parameter (i.e., Ω) and signal-to-noise ratio (SNR) also yielded significant correlations with bone density and structural features. Multiple linear regressions showed that bone volume fraction (BV/TV) was the main predictor of the Nakagami parameters, and microstructure produced significantly independent contribution to the prediction of Nakagami distribution parameters, explaining an additional 10.2% of the variance at most. The in vitro study showed that statistical parameters derived with Nakagami model might be useful for cancellous bone characterization, and statistical analysis has potential for ultrasonic backscatter bone evaluation.
|
Received: 22 November 2018
Revised: 17 December 2018
Accepted manuscript online:
|
PACS:
|
43.60.+d
|
(Acoustic signal processing)
|
|
43.80.+p
|
(Bioacoustics)
|
|
42.25.Fx
|
(Diffraction and scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874289, 11827808, 11504057, 11525416, and 81601504) and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Dean Ta
E-mail: tda@fudan.edu.cn
|
Cite this article:
Chengcheng Liu(刘成成), Rui Dong(东蕊), Boyi Li(李博艺), Ying Li(李颖), Feng Xu(徐峰), Dean Ta(他得安), Weiqi Wang(王威琪) Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model 2019 Chin. Phys. B 28 024302
|
[1] |
Rachner T D, Khosla S and Hofbauer L C 2011 Lancet 377 1276
|
[2] |
Kanis J A, Oden A, McCloskey E V, Johansson H, Wahl D A and Cooper C 2012 Osteoporos. Int. 23 2239
|
[3] |
Wang L F, Qiu K and Jia Y 2017 Chin. Phys. B 26 030503
|
[4] |
Lorente-Ramos R, Azpeitia-Arman J, Munoz-Hernandez A, Garcia-Gomez J M, Diez-Martinez P and Grande-Barez M 2011 Am. J. Roentgenol. 196 897
|
[5] |
Laugier P and Haïat G 2011 Bone Quantitative Ultrasound (Dordrecht, Heidelberg, London, New York: Springer)
|
[6] |
Wear K A, Nagaraja S, Dreher M L and Gibson S L 2012 J. Acoust. Soc. Am. 131 1605
|
[7] |
Liu Z, Song L, Bai L, Xu K and Ta D 2017 Acta Phys. Sin. 66 154303 (in Chinese)
|
[8] |
Zhang Z and Ta D 2012 Acta Phys. Sin. 61 134304 (in Chinese)
|
[9] |
Xu K, Ta D, Cassereau D, Hu B, Wang W, Laugier P and Minonzio J G 2016 J. Acoust. Soc. Am. 140 1758
|
[10] |
Hakulinen M A, Day J S, Toyras J, Timonen M, Kroger H, Weinans H, Kiviranta I and Jurvelin J S 2005 Phys. Med. Biol. 50 1629
|
[11] |
Bossy E, Padilla F, Peyrin F and Laugier P 2005 Phys. Med. Biol. 50 5545
|
[12] |
Wang X D, Lin W J, Su C and Wang X M 2018 Chin. Phys. B 27 024302
|
[13] |
Yuan Y, Lu C B and Li X L 2015 Chin. Phys. B 24 088704
|
[14] |
Guo X, Yang D, Zhang D, Li W, Qiu Y and Wu J 2009 J. Acoust. Soc. Am. 125 2834
|
[15] |
Zhang B X, Liu D D, Shi F F and Dong H F 2013 Chin. Phys. B 22 014302
|
[16] |
McCloskey E V, Kanis J A, Oden A, Harvey N C, Bauer D, Gonzalez-Macias J, Hans D, Kaptoge S, Krieg M A, Kwok T, Marin F, Moayyeri A, Orwoll E, Glusmall io R C and Johansson H 2015 Osteoporos. Int. 26 1979
|
[17] |
Langton C M and Njeh C F 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1546
|
[18] |
Njeh C F, Boivin C M and Langton C M 1997 Osteoporos. Int. 7 7
|
[19] |
Liu C, Tang T, Xu F, Ta D, Matsukawa M, Hu B and Wang W 2015 Ultrasound Med. Biol. 41 2714
|
[20] |
Litniewski J, Cieslik L, Wojcik J and Nowicki A 2011 J. Acoust. Soc. Am. 130 2224
|
[21] |
Malo M K, Toyras J, Karjalainen J P, Isaksson H, Riekkinen O and Jurvelin J S 2014 Bone 64 240
|
[22] |
Wear K A 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55 1432
|
[23] |
Roberjot V, Bridal S L, Laugier P and Berger G 1996 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43 970
|
[24] |
Padilla F, Jenson F, Bousson V, Peyrin F and Laugier P 2008 Bone 42 1193
|
[25] |
Hakulinen M A, Toyras J, Saarakkala S, Hirvonen J, Kroger H and Jurvelin J S 2004 Ultrasound Med. Biol. 30 919
|
[26] |
Yang X, Tang S, Tasciotti E and Righetti R 2018 Phys. Med. Biol. 63 025035
|
[27] |
Guo X, Zhang D and Gong X 2007 Phys. Med. Biol. 52 29
|
[28] |
Li Y, Li B, Xu F, Liu C, Ta D and Wang W 2018 Measurement 122 128
|
[29] |
Barkmann R, Dencks S, Laugier P, Padilla F, Brixen K, Ryg J, Seekamp A, Mahlke L, Bremer A, Heller M and Gluer C C 2010 Osteoporos. Int. 21 969
|
[30] |
Karjalainen J P, Toyras J, Riekkinen O, Hakulinen M and Jurvelin J S 2009 Ultrasound Med. Biol. 35 1376
|
[31] |
Ta D, Wang W, Huang K, Wang Y and Le L H 2008 J. Acoust. Soc. Am. 124 4083
|
[32] |
Liu C, Xu F, Ta D, Tang T, Jiang Y, Dong J, Wang W P, Liu X, Wang Y and Wang W Q 2016 J. Ultrasound Med. 35 2197
|
[33] |
Hoffmeister B K, Wilson A R, Gilbert M J and Sellers M E 2012 J. Acoust. Soc. Am. 132 4069
|
[34] |
Oelze M L and Mamou J 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 63 336
|
[35] |
Prager R W, Gee A H, Treece G M and Berman L H 2002 Ultrasonics 40 133
|
[36] |
Shankar P M 2000 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 727
|
[37] |
Lei B, Ma Y L and Yang K D 2011 Chin. Phys. Lett. 28 034302
|
[38] |
Chi J, Li X L, Gao D Z, Wang H Z and Wang N 2017 Acta Phys. Sin. 66 194304 (in Chinese)
|
[39] |
Wear K A, Wagner R F, Brown D G and Insana M F 1997 J. Acoust. Soc. Am. 102 635
|
[40] |
Wagner R F, Smith S W, Sandrik J M and Lopez H 1983 IEEE Trans. Son. Ultrason. 30 156
|
[41] |
Destrempes F and Cloutier G 2010 Ultrasound Med. Biol. 36 1037
|
[42] |
Shankar P M, Reid J M, Ortega H, Piccoli C W and Goldberg B B 1993 IEEE Trans. Med. Imaging 12 687
|
[43] |
Dutt V and Greenleaf J F 1994 Ultrason. Imaging 16 265
|
[44] |
Liu C C, Ta D A, Fujita F, Hachiken T, Matsukawa M, Mizuno K and Wang W Q 2014 J. Appl. Phys. 115 064906
|
[45] |
Hosokawa A 2014 Ultrasonics 54 1237
|
[46] |
Wear K A and Garra B S 1998 Ultrasound Med. Biol. 24 689
|
[47] |
Wang S H, Tsai F C and Hung Y L 2001 IEEE Ultrasonics Symposium Proceedings pp. 1205-1208
|
[48] |
Hildebr, T, Laib A, Muller R, Dequeker J and Ruegsegger P 1999 J. Bone Miner. Res. 14 1167
|
[49] |
Bouxsein M L, Boyd S K, Christiansen B A, Guldberg R E, Jepsen K J and Muller R 2010 J. Bone Miner. Res. 25 1468
|
[50] |
Kuc R and Schwartz M 1979 IEEE Trans. Son. Ultrason. 26 353
|
[51] |
Liu C C, Han H J, Ta D A and Wang W Q 2013 Sci. Chin.-Phys. Mech. Astron. 56 1310
|
[52] |
Lu J Y, Zou H and Greenleaf J F 1994 Ultrasound Med. Biol. 20 403
|
[53] |
Kossoff G 1979 Ultrasound Med. Biol. 5 359
|
[54] |
Li J X, Zhang M and Wei P B 2017 Chin. Phys. Lett. 34 094101
|
[55] |
Wells P and Halliwell M 1981 Ultrasonics 19 225
|
[56] |
Shankar P M 2004 Phys. Med. Biol. 49 1007
|
[57] |
Riekkinen O, Hakulinen M A, Timonen M, Toyras J and Jurvelin J S 2006 Ultrasound Med. Biol. 32 1073
|
[58] |
Liu C C, Ta D, Hu B, Le L H and Wang W Q 2014 J. Appl. Phys. 116 124903
|
[59] |
Hoffmeister B K, Holt A P and Kaste S C 2011 Phys. Med. Biol. 56 6243
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|