Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 023101    DOI: 10.1088/1674-1056/28/2/023101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Imaging alignment of rotational state-selected CH3I molecule

Le-Le Song(宋乐乐)1,2,3, Yan-Hui Wang(王艳辉)4, Xiao-Chun Wang(王晓春)1,3, Hong-Tao Sun(孙洪涛)1,3,5, Lan-Hai He(赫兰海)1,3, Si-Zuo Luo(罗嗣佐)1,3, Wen-Hui Hu(胡文惠)1,3, Dong-Xu Li(李东旭)1,3, Wen-Hui Zhu(朱文会)1,3, Ya-Nan Sun(孙亚楠)1,3, Da-Jun Ding(丁大军)1,3, Fu-Chun Liu(刘福春)1,3
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Institute of Chemical Technology, Jilin 132022, China;
3 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China;
4 College of Electronic Science and Engineering, State Key Laboratory on Integrated Optoelectronics, Jilin University, Changchun 130012, China;
5 General Hospital of FAW, Changchun 130011, China
Abstract  We experimentally and numerically investigate CH3I molecular alignment by using a femtosecond laser and a hexapole. The hexapole provides the |111> rotational state condition at 4.5-kV hexapole rod voltage. Based on this single rotational state, an enhanced alignment degree of 0.73 is achieved. Our experimental results are in agreement with the simulation results. We experimentally obtain the ion velocity map images and show the influence of the initial rotational-state population. With the I+ ion images and angular distributions at different pump-probe delay time, the alignment and anti-alignment phenomena are further demonstrated. The molecules will be under field-free conditions when the laser effect disappears completely at the full revival time. Our work shows that the quantum control and spatial control on CH3I molecules can be realized and molecular coordinate frame can be obtained for further molecular experiment.
Keywords:  hexapole      state selection      velocity map imaging      alignment  
Received:  27 July 2018      Revised:  07 November 2018      Accepted manuscript online: 
PACS:  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
  33.15.Kr (Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574116, 11534004, 10704028, and 11474123) and the Natural Science Foundation of Jilin Province, China (Grant No. 20170101154JC).
Corresponding Authors:  Fu-Chun Liu     E-mail:  lfc@jlu.edu.cn

Cite this article: 

Le-Le Song(宋乐乐), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Hong-Tao Sun(孙洪涛), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Dong-Xu Li(李东旭), Wen-Hui Zhu(朱文会), Ya-Nan Sun(孙亚楠), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春) Imaging alignment of rotational state-selected CH3I molecule 2019 Chin. Phys. B 28 023101

[1] Mikosch J, Boguslavskiy A E, Wilkinson I, Spanner M, Patchkovskii S and Stolow A 2013 Phys. Rev. L 110 023004
[2] Kanai T, Minemoto S and Sakai H 2007 Phys. Rev. Lett. 98 053002
[3] Pinkham D and Jones R R 2005 Phys. Rev. A 72 023418
[4] Li Y, Yang S P, Jia X Y and Chen J 2010 Chin. Phys. B 19 043303
[5] Kramer K H and Bernstein R B 1965 J. Chem. Phys. 42 767
[6] Bazalgette G, White R, Loison J C, Trénec G and Vigué J 1995 Chem. Phys. Lett. 244 195
[7] Loison J C, Dur, A, Bazalgette G, White R, Audouard E and J 1995 J. Chem. Phys. 99 13591
[8] Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543
[9] Holmegaard L, Nielsen J H, Nevo I and Stapelfeldt H 2009 Phys. Rev. Lett. 102 023001
[10] He L H, Bulthuis J, Luo S Z, Wang J, L U C J, Stolte S, Ding D J and Roeterdink 2015 Phys. Chem. Chem. Phys. 17 24121
[11] Gandhi S R, Curtiss T J, Xu Q X, Choi S E and Bernstein R B 1986 Chem. Phys. Lett. 132 6
[12] Kasai T, Fukawa T, Matsunami T, Che D and Ohashi K 1993 Rev. Sci. Instrum. 64 1150
[13] Varma S, Chen Y H and Milchberg H M 2008 Phys. Rev. Lett. 101 205001
[14] Ripoche J F, Grillon G, Prade B, Franco M, Nibbering E, Rüdiger E and André M 1997 Opt. Commun. 135 310
[15] Wu J, Cai H, Peng Y, Tong Y, Couairon A, Tong Y Q and Zeng H P 2009 Physics 19 1759
[16] Xu N, Li J and Zhang Z 2011 ICEICE, Vol. 03 (IEEE Computer Society Washington Distict of Columbia: InTech) pp. 606-609
[17] Averbukh I S and Perelman N F 1989 Phys. Lett. A 139 449
[18] Robinett R W 2004 Phys. Rep. 392 1
[19] Lee G H, Kim H T, Park J Y, Nam C H and Kim T K2006 J. Korkan Phys. Soc. 49 337
[20] Eppink A T J B and Parker D H 1998 J. Chem. Phys. 109 4758
[21] Jung Y J, Yong S K, Kang W K and Jung K H 1997 J. Chem. Phys. 107 7187
[22] van D B, Lipciuc M L and Janssen M H M 2003 Chem. Phys. Lett. 368 324
[23] Samartzis P C, Bakker L G, Parker H and Theofanis N K 1999 J. Phys. Chem. A 103 6106
[24] Graham P, Ledingham K W D, Singhai R P, Hankin S M and Mccanny T 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4015
[25] Seideman T 1995 J. Chem. Phys. 103 7887
[26] Friedrich B and Herschbach D 1995 Phys. Rev. Lett. 74 4623
[27] Yoshida M, Nakashima K and Ohtsuki Y 2015 ICCMSE, Vol. 1702 (Athens Greece: P Conference Proceedings) p. 1
[28] Hamilton E, Seideman T, Ejdrup T, Poulsen M D and Bisgaard C Z 2016 Phys. Rev. A 72 440
[29] Zhu R H, Wang C C, Luo S Z, Yang X and Zhang M X 2013 Front. Phys. 8 236
[30] Luo S Z, Zhou S S, HuW H, Li X K, MaP, Yu J Q, ZhuR H, Wang C C, Liu F C, Y B, Liu A H, YangY J, Guo F M and Ding D J 2017 Phys. Rev. A 96 063415
[31] Luo S Z, Zhu R H, He L H, Wen HuW H, Li X K, Ma P, Wang C C, Liu F C, Roeterdink W G, Steven S and Ding D J 2015 Phys. Rev. A 91 053408
[32] Anderson R W 1997 J. Phys. Chem. A 101 7664
[33] Liu F C, Jin M X and Ding D J 2006 Chin. Phys. Lett. 23 1165
[34] Roeterdink W G, Bulthuis J, Lee E P F, Ding D and Taatjes C A 2014 Chem. Phys. Lett. 598 96
[35] Liu F C, Jin M X and Ding D J 2006 Chin. Phys. Lett. 23 344
[36] Dribinski V, Ossadtchi A, Mandelshtam V A and Reisler H 2002 Rev. Sci. Instrum. 73 2634
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[4] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[5] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[6] Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2022, 31(10): 103301.
[7] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[8] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[9] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[10] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[11] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[12] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[13] Photoelectron imaging on vibrational excitation and Rydberg intermediate states in multi-photon ionization process of NH3 molecule
Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Le-Le Song(宋乐乐), Hai-Bin Du(杜海滨), Xiao-Chun Wang(王晓春), Lan-Lai He(赫兰海), Si-Zuo Luo(罗嗣佐), Qin Yang(杨钦), Jing Leng(冷静), Fu-Chun Liu(刘福春). Chin. Phys. B, 2020, 29(9): 093201.
[14] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[15] New measuring method of fiber alignment in precision torsion pendulum experiments
Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚). Chin. Phys. B, 2020, 29(8): 080401.
No Suggested Reading articles found!