|
|
Imaging alignment of rotational state-selected CH3I molecule |
Le-Le Song(宋乐乐)1,2,3, Yan-Hui Wang(王艳辉)4, Xiao-Chun Wang(王晓春)1,3, Hong-Tao Sun(孙洪涛)1,3,5, Lan-Hai He(赫兰海)1,3, Si-Zuo Luo(罗嗣佐)1,3, Wen-Hui Hu(胡文惠)1,3, Dong-Xu Li(李东旭)1,3, Wen-Hui Zhu(朱文会)1,3, Ya-Nan Sun(孙亚楠)1,3, Da-Jun Ding(丁大军)1,3, Fu-Chun Liu(刘福春)1,3 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 Jilin Institute of Chemical Technology, Jilin 132022, China; 3 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China; 4 College of Electronic Science and Engineering, State Key Laboratory on Integrated Optoelectronics, Jilin University, Changchun 130012, China; 5 General Hospital of FAW, Changchun 130011, China |
|
|
Abstract We experimentally and numerically investigate CH3I molecular alignment by using a femtosecond laser and a hexapole. The hexapole provides the |111> rotational state condition at 4.5-kV hexapole rod voltage. Based on this single rotational state, an enhanced alignment degree of 0.73 is achieved. Our experimental results are in agreement with the simulation results. We experimentally obtain the ion velocity map images and show the influence of the initial rotational-state population. With the I+ ion images and angular distributions at different pump-probe delay time, the alignment and anti-alignment phenomena are further demonstrated. The molecules will be under field-free conditions when the laser effect disappears completely at the full revival time. Our work shows that the quantum control and spatial control on CH3I molecules can be realized and molecular coordinate frame can be obtained for further molecular experiment.
|
Received: 27 July 2018
Revised: 07 November 2018
Accepted manuscript online:
|
PACS:
|
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
33.15.Kr
|
(Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574116, 11534004, 10704028, and 11474123) and the Natural Science Foundation of Jilin Province, China (Grant No. 20170101154JC). |
Corresponding Authors:
Fu-Chun Liu
E-mail: lfc@jlu.edu.cn
|
Cite this article:
Le-Le Song(宋乐乐), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Hong-Tao Sun(孙洪涛), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Dong-Xu Li(李东旭), Wen-Hui Zhu(朱文会), Ya-Nan Sun(孙亚楠), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春) Imaging alignment of rotational state-selected CH3I molecule 2019 Chin. Phys. B 28 023101
|
[1] |
Mikosch J, Boguslavskiy A E, Wilkinson I, Spanner M, Patchkovskii S and Stolow A 2013 Phys. Rev. L 110 023004
|
[2] |
Kanai T, Minemoto S and Sakai H 2007 Phys. Rev. Lett. 98 053002
|
[3] |
Pinkham D and Jones R R 2005 Phys. Rev. A 72 023418
|
[4] |
Li Y, Yang S P, Jia X Y and Chen J 2010 Chin. Phys. B 19 043303
|
[5] |
Kramer K H and Bernstein R B 1965 J. Chem. Phys. 42 767
|
[6] |
Bazalgette G, White R, Loison J C, Trénec G and Vigué J 1995 Chem. Phys. Lett. 244 195
|
[7] |
Loison J C, Dur, A, Bazalgette G, White R, Audouard E and J 1995 J. Chem. Phys. 99 13591
|
[8] |
Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543
|
[9] |
Holmegaard L, Nielsen J H, Nevo I and Stapelfeldt H 2009 Phys. Rev. Lett. 102 023001
|
[10] |
He L H, Bulthuis J, Luo S Z, Wang J, L U C J, Stolte S, Ding D J and Roeterdink 2015 Phys. Chem. Chem. Phys. 17 24121
|
[11] |
Gandhi S R, Curtiss T J, Xu Q X, Choi S E and Bernstein R B 1986 Chem. Phys. Lett. 132 6
|
[12] |
Kasai T, Fukawa T, Matsunami T, Che D and Ohashi K 1993 Rev. Sci. Instrum. 64 1150
|
[13] |
Varma S, Chen Y H and Milchberg H M 2008 Phys. Rev. Lett. 101 205001
|
[14] |
Ripoche J F, Grillon G, Prade B, Franco M, Nibbering E, Rüdiger E and André M 1997 Opt. Commun. 135 310
|
[15] |
Wu J, Cai H, Peng Y, Tong Y, Couairon A, Tong Y Q and Zeng H P 2009 Physics 19 1759
|
[16] |
Xu N, Li J and Zhang Z 2011 ICEICE, Vol. 03 (IEEE Computer Society Washington Distict of Columbia: InTech) pp. 606-609
|
[17] |
Averbukh I S and Perelman N F 1989 Phys. Lett. A 139 449
|
[18] |
Robinett R W 2004 Phys. Rep. 392 1
|
[19] |
Lee G H, Kim H T, Park J Y, Nam C H and Kim T K2006 J. Korkan Phys. Soc. 49 337
|
[20] |
Eppink A T J B and Parker D H 1998 J. Chem. Phys. 109 4758
|
[21] |
Jung Y J, Yong S K, Kang W K and Jung K H 1997 J. Chem. Phys. 107 7187
|
[22] |
van D B, Lipciuc M L and Janssen M H M 2003 Chem. Phys. Lett. 368 324
|
[23] |
Samartzis P C, Bakker L G, Parker H and Theofanis N K 1999 J. Phys. Chem. A 103 6106
|
[24] |
Graham P, Ledingham K W D, Singhai R P, Hankin S M and Mccanny T 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4015
|
[25] |
Seideman T 1995 J. Chem. Phys. 103 7887
|
[26] |
Friedrich B and Herschbach D 1995 Phys. Rev. Lett. 74 4623
|
[27] |
Yoshida M, Nakashima K and Ohtsuki Y 2015 ICCMSE, Vol. 1702 (Athens Greece: P Conference Proceedings) p. 1
|
[28] |
Hamilton E, Seideman T, Ejdrup T, Poulsen M D and Bisgaard C Z 2016 Phys. Rev. A 72 440
|
[29] |
Zhu R H, Wang C C, Luo S Z, Yang X and Zhang M X 2013 Front. Phys. 8 236
|
[30] |
Luo S Z, Zhou S S, HuW H, Li X K, MaP, Yu J Q, ZhuR H, Wang C C, Liu F C, Y B, Liu A H, YangY J, Guo F M and Ding D J 2017 Phys. Rev. A 96 063415
|
[31] |
Luo S Z, Zhu R H, He L H, Wen HuW H, Li X K, Ma P, Wang C C, Liu F C, Roeterdink W G, Steven S and Ding D J 2015 Phys. Rev. A 91 053408
|
[32] |
Anderson R W 1997 J. Phys. Chem. A 101 7664
|
[33] |
Liu F C, Jin M X and Ding D J 2006 Chin. Phys. Lett. 23 1165
|
[34] |
Roeterdink W G, Bulthuis J, Lee E P F, Ding D and Taatjes C A 2014 Chem. Phys. Lett. 598 96
|
[35] |
Liu F C, Jin M X and Ding D J 2006 Chin. Phys. Lett. 23 344
|
[36] |
Dribinski V, Ossadtchi A, Mandelshtam V A and Reisler H 2002 Rev. Sci. Instrum. 73 2634
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|