Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 023102    DOI: 10.1088/1674-1056/28/2/023102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics

Ting Xu(许婷)1, Juan Zhao(赵娟)2, Xian-Long Wang(王宪龙)1, Qing-Tian Meng(孟庆田)1
1 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China;
2 College of Science, Shandong Jiaotong University, Jinan 250357, China
Abstract  

The quantum state-to-state calculations of the D+ND→N+D2 reaction are performed on a potential energy surface of 4A" state. The state-resolved integral and differential cross sections and product state distributions are calculated and discussed. It is found that the rotational distribution, rather than the vibrational distribution, of the product has an obvious inversion. Due to the fact that it is a small-impact-parameter collision, its product D2 is mainly dominated by rebound mechanism, which can lead to backward scattering at low collision energy. As the collision energy increases, the forward scattering and sideward scattering begin to appear. In addition, the backward collision is also found to happen at high collision energy, through which we can know that both the rebound mechanism and stripping mechanism exist at high collision energy.

Keywords:  state-to-state quantum dynamics      time-dependent wave packet      D+ND      differential cross section  
Received:  19 October 2018      Revised:  03 December 2018      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.-s (Scattering of atoms and molecules)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674198 and 11504206), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016AP14), and the Taishan Scholar Project of Shandong Province, China.

Corresponding Authors:  Qing-Tian Meng     E-mail:  qtmeng@sdnu.edu.cn

Cite this article: 

Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田) Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics 2019 Chin. Phys. B 28 023102

[1] Haynes B S 1977 Combust. Flame 28 113
[2] Prasad K, Yetter R A and Smooke M D 1997 Combust. Sci. Technol. 124 35
[3] Pederson L A, Schatz G C, Hollebeek T, Ho T S, Rabitz H and Harding L B 2000 J. Phys. Chem. A 104 2301
[4] Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A and Chen C 1990 J. Chem. Phys. 93 8703
[5] Davidson D F and Hanson R K 1990 Int. J. Chem. Kinet. 22 843
[6] Adam L, Hack W, Zhu H, Qu Z W and Schinke R 2005 J. Chem. Phys. 122 114301
[7] Qu Z W, Zhu H, Schinke R, Adam L and Hack W 2005 J. Chem. Phys. 122 204313
[8] Wang X L, Gao F, Gao S B, Zhang L L, Song Y Z and Meng Q T 2018 Chin. Phys. B 27 043104
[9] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B: At. Mol. Opt. Phys. 42 165006
[10] Takayanagi T, Kurosaki Y and Yokoyama K 2000 Chem. Phys. Lett. 321 106
[11] Pascual R Z, Schatz G C, Lendavy G and Troya D 2002 J. Phys. Chem. A 106 4125
[12] Thompson K C and Collins M A 1997 J. Chem. Soc. Faraday Trans. 93 871
[13] Thompson K C, Jordan M J T and Collins M A 1998 J. Chem. Phys. 108 8302
[14] Bettens R P A and Collins M A 1999 J. Chem. Phys. 111 816
[15] Jordan M J T, Thompson K C and Collins M A 1995 J. Chem. Phys. 102 5647
[16] Zhai H S and Han K L 2011 J. Chem. Phys. 135 104314
[17] Yu X and Yu Y J 2013 Integr. Ferroelectr. 147 67
[18] Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P and Duan Y B 2011 Chin. Phys. Lett. 28 093403
[19] Zhang J, Gao S B, Wu H and Meng Q T 2015 Chin. Phys. B 24 083104
[20] Yao C X, Zhang P Y, Duan Z X and Zhao G J 2014 Theor. Chem. Acc. 133 1489
[21] Li D, Wang Y and Wumaier T 2016 Eur. Phys. J. D 70 173
[22] Chu T S, Han K L, Hankel M, Balint-Kurti G G, Kuppermann A and Abrol R 2009 J. Chem. Phys. 130 144301
[23] Gomez-Carrasco S and Roncero O 2006 J. Chem. Phys. 125 054102
[24] Monge-Palacios M, Rangel C, Espinosa-Garcia J, Fu H and Yang M H 2013 Theor. Chem. Acc. 132 1349
[25] Peng T and Zhang J Z H 1996 J. Chem. Phys. 105 6072
[26] Althorpe S C 2001 J. Chem. Phys. 114 1601
[27] Hankel M, Smith S C, Allan R J, Gray S K and Balint-Kurti G G 2006 J. Chem. Phys. 125 164303
[28] Garcia E, Aoiz F J and Lagana A 2012 Theor. Chem. Acc. 131 1262
[29] Zhang P Y and Han K L 2013 J. Phys. Chem. A 117 8512
[30] Zhang P Y and Han K L 2014 J. Phys. Chem. A 118 8929
[31] Zhang P Y and Han K L 2015 Int. J. Quantum Chem. 115 738
[32] Rao B J and Mahapatra S 2009 J. Chem. Sci. 121 789
[33] Padmanaban R and Mahapatra S 2006 J. Theor. Comput. Chem. 5 871
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[3] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[4] Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions
Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福). Chin. Phys. B, 2020, 29(12): 120301.
[5] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[6] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[7] Polarization and exchange effects in elastic scattering of electron with atoms and ions
Zhang-Jin Chen(陈长进), Dan-Dan Cui(崔丹丹). Chin. Phys. B, 2018, 27(5): 053403.
[8] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[9] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
[10] Differential cross sections of positron—hydrogen collisions
Rong-Mei Yu(于荣梅), Chun-Ying Pu(濮春英), Xiao-Yu Huang(黄晓玉), Fu-Rong Yin(殷复荣), Xu-Yan Liu(刘旭焱), Li-Guang Jiao(焦利光), Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(7): 073401.
[11] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[12] State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction
Yong Zhang(张勇). Chin. Phys. B, 2016, 25(12): 123104.
[13] Triple differential cross sections of magnesium in doubly symmetric geometry
S Y Sun(孙世艳), X Y Miao(苗向阳), Xiang-Fu Jia(贾祥富). Chin. Phys. B, 2016, 25(1): 013401.
[14] State-to-state quantum dynamics of the N(4S)+H2 (X1Σ+)→NH(X3-)+H(2S) reaction and its reaction mechanism analysis
Zhang Jing (张静), Gao Shou-Bao (高守宝), Wu Hui (吴慧), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(8): 083104.
[15] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
No Suggested Reading articles found!