Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 018103    DOI: 10.1088/1674-1056/28/1/018103
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates

Z K Zhang, W W Pan, J L Liu, W Lei
Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
Abstract  

We review our recent efforts on developing HgCdSe infrared materials on GaSb substrates via molecular beam epitaxy (MBE) for fabricating next generation infrared detectors with features of lower production cost and larger focal plane array format size. In order to achieve high-quality HgCdSe epilayers, ZnTe buffer layers are grown before growing HgCdSe, and the study of misfit strain in ZnTe buffer layers shows that the thickness of ZnTe buffer layer needs to be below 300 nm in order to minimize the generation of misfit dislocations. The cut-off wavelength/alloy composition of HgCdSe materials can be varied in a wide range by varying the ratio of Se/Cd beam equivalent pressure during the HgCdSe growth. Growth temperature presents significant impact on the material quality of HgCdSe, and lower growth temperature leads to higher material quality for HgCdSe. Typically, long-wave infrared HgCdSe (x = 0.18, cut-off wavelength of 10.4 μm at 80 K) presents an electron mobility as high as 1.3×105 cm2·V-1·s-1, a background electron concentration as low as 1.6×1016 cm-3, and a minority carrier lifetime as long as 2.2 μs. These values of electron mobility and minority carrier lifetime represent a significant improvement on previous studies of MBE-grown HgCdSe reported in the open literatures, and are comparable to those of counterpart HgCdTe materials grown on lattice-matched CdZnTe substrates. These results indicate that HgCdSe grown at the University of Western Australia, especially long-wave infrared can meet the basic material quality requirements for making high performance infrared detectors although further effort is required to control the background electron concentration to below 1015 cm-3. More importantly, even higher quality HgCdSe materials on GaSb are expected by further optimizing the growth conditions, using higher purity Se source material, and implementing postgrowth thermal annealing and defect/impurity gettering/filtering. Our results demonstrate the great potential of HgCdSe infrared materials grown on GaSb substrates for fabricating next generation infrared detectors with features of lower cost and larger array format size.

Keywords:  infrared detector      HgCdSe      GaSb      molecular beam epitaxy  
Received:  23 October 2018      Revised:  25 December 2018      Accepted manuscript online: 
PACS:  81.05.Dz (II-VI semiconductors)  
  61.72.uj (III-V and II-VI semiconductors)  
  73.61.Ga (II-VI semiconductors)  
Fund: 

Project supported by the Australian Research Council (Grant Nos. FT130101708, DP170104562, LP170100088, and LE170100233), Universities AustraliaDAAD German Research Cooperation Scheme (Grant No. 2014-2015), and a Research Collaboration Award from The University of Western Australia. Facilities used in this work are supported by the WA node of Australian National Fabrication Facility (ANFF).

Corresponding Authors:  W Lei     E-mail:  wen.lei@uwa.edu.au

Cite this article: 

Z K Zhang, W W Pan, J L Liu, W Lei A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates 2019 Chin. Phys. B 28 018103

[1] Butler M J A, Mouchot M C, Barale V and LeBlanc C 1988 FAO Fish. Tech. Pap. 295 165
[2] Norton P 2002 Optoelectronics Rev. 3 159
[3] Lei W, Antoszewski J and Faraone L 2015 Appl. Phys. Rev. 2 041303
[4] Lei W, Gu R, Antoszewski J, Dell J and Faraone L 2014 J. Electron. Mater. 43 2788
[5] Lei W, Ren Y, Madni I and Faraone L 2018 Infrared Phys. Techn 92 96
[6] Lei W 2018 J. Nanoscience Nanotechnol. 18 7349
[7] Lei W, Gu R, Antoszewski J, Dell J, Neusser G, Sieger M, Mizaikoff B and Faraone L 2015 J. Electron. Mater. 44 3180
[8] Doyle K 2013 Development of HgCdSe for Third Generation Focal Plane Arrays using Molecular Beam Epitaxy (Ph. D. Thesis) (West Virginia University)
[9] Brill G, Chen Y and Wijewarnasuriya P 2011 J. Electron. Mater. 40 1679
[10] Reddy M, Peterson J, Lofgreen D, Vang T, Patten E, Radford W and Johnson S 2010 J. Electron. Mater. 39 974
[11] Lei W, Ren Y, Madni I, Umana-Membreno G and Faraone L 2018 Infrared Phys. Tech. 92 197
[12] Madni I, Membreno G, Lei W and Faraone L 2018 J. Electron. Mater. 47 5691
[13] Brill G N, Chen Y, Wijewarnasuriya P S and Dhar N K 2012 Phys. Status Solidi (a) 209 1423
[14] Doyle K, Swartz C H, Dinan J H, Myers T H, Brill G, Chen Y, VanMil B L and Wijewarnasuriya P 2013 J. Vac. Sci. Technol. B 31 03C124
[15] Capper P, Harris J E, O’Keefe E S, Jones C L and Gale I 1995 Advanced Mater. For Opt. Electron. 5 101
[16] Chai J, Noriega O C, Dinan J H and Myers T H 2012 J. Electron. Mater. 41 3001
[17] Brill G and Chen Y P 2011 Development of 6.1 Å materials for IR applications, Project report (ARL-TR-5855), Army Research Lab, US
[18] Wenisch J, Schirmacher W, Wollrab R, Eich D, Hanna S, Breiter R, Lutz H and Figgemeier H 2015 J. Electron. Mater. 44 3002
[19] Garl, J and Capper P 2011 Mercury Cadmium Telluride: Growth, Properties and Applications (West Susses: John Wiley) Chap. 12 pp. 275-295
[20] Krishnamurthy S, Chen A B, Sher A and Van Schilfgaarde M 1995 J. Electron. Mater. 24 1121
[21] Guenzer C S and Bienenstock A 1973 Phys. Rev. B 8 4655
[22] Chandrasekhar Rao T, Antoszewski J, Faraone L, Rodriguez J, Plis E and Krishna S 2008 Appl. Phys. Lett. 92 012121
[23] Carmody M, Edwall D, Ellsworth J, Arias J, Groenert M, Jacobs R, Almeida L, Dinan J, Chen Y and Brill G 2007 J. Electron. Mater. 36 1098
[24] Swartz C, Tompkins R, Giles N, Myers T, Edwall D, Ellsworth J, Piquette E, Arias J, Berding M and Krishnamurthy S 2004 J. Electron. Mater. 33 728
[25] Cui H, Zeng J, Tang N and Tang Z 2013 Opt. Quant Electron. 45 629
[26] Doyle K, Swartz C, Pattison J, Chen Y and Myers T 2013 Electron Transport and Minority Carrier Lifetime in HgCdSe, in: 2013 Ⅱ-VI Workshop, Chicago, Illinois, October 1-3, 2013
[27] Kinch M, Brau M and Simmons A 1973 J. Appl. Phys. 44 1649
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[7] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[8] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[9] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[10] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[11] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[12] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[13] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[14] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[15] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
No Suggested Reading articles found!