Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017203    DOI: 10.1088/1674-1056/28/1/017203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current diffusion and efficiency droop in vertical light emitting diodes

R Q Wan(万荣桥)1, T Li(李滔)1, Z Q Liu(刘志强)2,3, X Y Yi(伊晓燕)2,3, J X Wang(王军喜)2,3, J H Li(李军辉)1, W H Zhu(朱文辉)1, J M Li(李晋闽)2, L C Wang(汪炼成)1
1 State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China;
2 Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Abstract  

Current diffusion is an old issue, nevertheless, the relationship between the current diffusion and the efficiency of light emitting diodes (LEDs) needs to be further quantitatively clarified. By incorporating current crowding effect (CCE) into the conventional ABC model, we have theoretically and directly correlated the current diffusion and the internal quantum efficiency (IQE), light extraction efficiency (LEE), and external quantum efficiency (EQE) droop of the lateral LEDs. However, questions still exist for the vertical LEDs (V-LEDs). Here firstly the current diffusion length Ls(I) and Ls(Ⅱ) have been clarified. Based on this, the influence of CCE on the EQE, IQE, and LEE of V-LEDs were investigated. Specifically to our V-LEDs with moderate series resistivity, Ls(Ⅲ) was developed by combining Ls(I) and Ls(Ⅱ), and the CCE effect on the performance of V-LEDs was investigated. The wall-plug efficiency (WPE) of V-LEDs ware investigated finally. Our works provide a deep understanding of the current diffusion status and the correlated efficiency droop in V-LEDs, thus would benefit the V-LEDs' chip design and further efficiency improvement.

Keywords:  efficiency droop      vertical light emitting diodes      current crowding effect      current blocking layer  
Received:  21 June 2018      Revised:  07 November 2018      Accepted manuscript online: 
PACS:  72.90.+y (Other topics in electronic transport in condensed matter)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0406702), the Professorship Start-up Funding (Grant No. 217056), the Innovation-Driven Project of Central South University, China (Grant No. 2018CX001), the Project of State Key Laboratory of High-Performance Complex Manufacturing, Central South University, China (Grant No. ZZYJKT2018-01), and Guangzhou Science & Technology Project of Guangdong Province, China (Grant Nos. 201704030106 and 2016201604030035).

Corresponding Authors:  L C Wang     E-mail:  liancheng_wang@csu.edu.cn,wanglc@semi.ac.cn

Cite this article: 

R Q Wan(万荣桥), T Li(李滔), Z Q Liu(刘志强), X Y Yi(伊晓燕), J X Wang(王军喜), J H Li(李军辉), W H Zhu(朱文辉), J M Li(李晋闽), L C Wang(汪炼成) Current diffusion and efficiency droop in vertical light emitting diodes 2019 Chin. Phys. B 28 017203

[1] Zhao Y K, Li Y F, Huang Y P, Wang H, Su X L, Ding W and Yun F 2015 Chin. Phys. B 24 056806
[2] Zhuo X J, Zhang J, Li D W, Yi H X, Ren Z W, Tong J H, Wang X F, Chen X, Zhao B J, Wang W L and Li S T 2014 Chin. Phys. B 23 068502
[3] Yang B, Guo Z Y, Xie N, Zhang P J, Li J, Li F Z, Lin H, Zheng H and Cai J X 2014 Chin. Phys. B 23 048502
[4] Thompson G H B 1980 Physics of Semiconductor Laser Devices (New York: John Wiley and Sons)
[5] Guo X and Schubert E 2001 J. Appl. Phys. 90 4191
[6] Guo X and Schubert E 2001 Appl. Phys. Lett. 78 3337
[7] Schubert E F, Gessmann T and Kim J K 2005 Light Emitting Diodes (New York: John Wiley and Sons)
[8] Joyce W 1970 J. Appl. Phys. 41 3818
[9] Rattier M, Benisty H, Stanley R, Carlin J, Houdre R, Oesterle U, Smith C, Weisbuch C and Krauss T 2002 IEEE J. Select. Top. Quantum Electron. 8 238
[10] Chernyakov A, Bulashevich K, Karpov S and Zakgeim A 2013 Phys. Status Solidi A 210 466
[11] Calciati M, Goano M, Bertazzi F, Vallone M, Zhou X, Ghione G, Meneghini M, Meneghesso G, Zanoni E, Bellotti E, Verzellesi G, Zhu D and Humphreys C 2014 AIP Adv. 4 067118
[12] Huang S, Fan B, Chen Z, Zheng Z, Luo H, Wu Z, Wang G and Jiang H 2013 J. Display Technol. 9 266
[13] Ebong A, Arthur S, Downey E, Cao X, LeBoeuf S and Merfeld D 2003 Solid-State Electron. 47 1817
[14] Cao B, Li S, Hu R, Zhou S, Sun Y, Gan Z and Liu S 2013 Opt. Express 21 25381
[15] Li C and Wu Y 2012 IEEE Trans. Electron. Devices 59 400
[16] Zhang Y, Zheng H, Guo E, Cheng Y, Ma J, Wang L, Liu Z, Yi X, Wang G and Li J 2013 J. Appl. Phys. 113 014502
[17] Lee H, Pan K, Lin C, Chang Y, Kao F and Lee C 2007 J. Vac. Sci. Technol. B 25 1280
[18] Kim H, Lee J, Huh C, Kim S, Kim D, Park S and Hwang H 2000 Appl. Phys. Lett. 77 1903
[19] Kim H, Park S, Hwang H and Park N 2002 Appl. Phys. Lett. 81 1326
[20] Kim H, Park S J and Hwang H 2001 IEEE Trans. Electron. Dev. 48 1065
[21] Bogdanov M, Bulashevich K, Evstratov I, Zhmakin A and Karpov S 2008 Semicond. Sci. Technol. 23 125023
[22] Guo X, Li Y and Schubert E 2001 Appl. Phys. Lett. 79 1936
[23] Wang L, Liu W, Zhang Y, Zhang Z, Tan S, Yi X, Wang G, Sun X, Zhu H and Demir H 2015 Nano Energy 12 419
[24] Wang L, Zhang Y, Li X, Liu Z, Guo E, Yi X, Wang J, Zhu H and Wang G 2012 Appl. Phys. Lett. 101 061102
[25] Zhang Y, Wei T, Xiong Z, Chen Y, Zhen A, Shan L, Zhao Y, Hu Q, Li J and Wang J 2014 J. Appl. Phys. 116 194301
[26] Zhang Y, Li J, Wei T, Liu J, Yi X, Wang G and Yi F 2012 Jpn. J. Appl. Phys. 51 020204
[27] Jeon S, Song Y, Jang H, Yang G, Hwang S and Son S 2001 Appl. Phys. Lett. 78 3265
[28] Zhang Z, Tan S, Kyaw Z, Ji Y, Liu W, Ju Z, Hasanov N, Sun X and Demir H 2013 Appl. Phys. Lett. 102 193508
[29] Huh C, Lee J, Kim D and Park S 2002 J. Appl. Phys. 92 2248
[30] Malyutenko V, Bolgov S and Podoltsev A 2010 Appl. Phys. Lett. 97 251110
[31] Piprek J 2010 Phys. Stat. Sol. 207 2217
[32] Wang L, Zhang Z and Wang N 2015 IEEE J. Quantum Electron. 51 3200109
[33] Ryu H and Shim J 2011 Opt. Express 19 2886
[34] Wang L, Liu Z, Guo E, Yang H, Yi X and Wang G 2013 ACS Appl. Mater &Interfaces 5 5797
[35] Wang L, Zhang Y, Li X, Liu Z, Guo E, Yi X, Wang J, Zhu H and Wang G 2012 J. Phys. D: Appl. Phys. 45 505102
[36] Zhu D, Xu J, Noemaun A, Kim J, Schubert E, Crawford M and Koleske D 2009 Appl. Phys. Lett. 94 081113
[37] Wang L, Zhang Y, Li X, Liu Z, Zhang L, Guo E, Yi X, Zhu H and Wang G 2013 Proc. Roy. Soc. London A: Math. Phys. Eng. Sci. 469 20120652
[38] Wang L, Guo E, Liu Z, Yi X and Wang G 2016 IEEE Trans. Electron. Dev. 63 892
[1] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[2] Effects of hole-injection through side-walls of large V-pits on efficiency droop in Ⅲ-nitride LEDs
Dong-Yan Zhang(张东炎), Jie Zhang(张洁), Xiao-Feng Liu(刘晓峰), Sha-Sha Chen(陈沙沙), Hui-Wen Li(李慧文), Ming-Qing Liu(刘明庆), Da-Qian Ye(叶大千), Du-Xiang Wang(王笃祥). Chin. Phys. B, 2019, 28(4): 048501.
[3] Improved carrier injection and confinement in InGaN light-emitting diodes containing GaN/AlGaN/GaN triangular barriers
Li-Wen Cheng(程立文), Jian Ma(马剑), Chang-Rui Cao(曹常锐), Zuo-Zheng Xu(徐作政), Tian Lan(兰天), Jin-Peng Yang(杨金彭), Hai-Tao Chen(陈海涛), Hong-Yan Yu(于洪岩), Shu-Dong Wu(吴曙东), Shun Yao(尧舜), Xiang-Hua Zeng(曾祥华), Zai-Quan Xu(徐仔全). Chin. Phys. B, 2018, 27(8): 088504.
[4] Enhanced performances of AlGaInP-based light-emitting diodes with Schottky current blocking layers
Ma Li (马莉), Shen Guang-Di (沈光地), Gao Zhi-Yuan (高志远), Xu Chen (徐晨). Chin. Phys. B, 2015, 24(9): 097202.
[5] Efficiency droop suppression in GaN-based light-emitting diodes by chirped multiple quantum well structure at high current injection
Zhao Yu-Kun (赵宇坤), Li Yu-Feng (李虞锋), Huang Ya-Ping (黄亚平), Wang Hong (王宏), Su Xi-Lin (苏喜林), Ding Wen (丁文), Yun Feng (云峰). Chin. Phys. B, 2015, 24(5): 056806.
[6] Variation of efficiency droop with quantum well thickness in InGaN/GaN green light-emitting diode
Liu Wei (刘炜), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Chen Ping (陈平), Liu Zong-Shun (刘宗顺), Zhu Jian-Jun (朱建军), Li Xiang (李翔), Liang Feng (梁锋), Liu Jian-Ping (刘建平), Yang Hui (杨辉). Chin. Phys. B, 2015, 24(12): 127801.
[7] Enhanced performances of InGaN/GaN-based blue light-emitting diode with InGaN/AlInGaN superlattice electron blocking layer
Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Li Dan-Wei (李丹伟), Yi Han-Xiang (易翰翔), Ren Zhi-Wei (任志伟), Tong Jin-Hui (童金辉), Wang Xing-Fu (王幸福), Chen Xin (陈鑫), Zhao Bi-Jun (赵璧君), Wang Wei-Li (王伟丽), Li Shu-Ti (李述体). Chin. Phys. B, 2014, 23(6): 068502.
[8] A GaN–AlGaN–InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED
Yang Bin (杨斌), Guo Zhi-You (郭志友), Xie Nan (解楠), Zhang Pan-Jun (张盼君), Li Jing (李婧), Li Fang-Zheng (李方正), Lin Hong (林宏), Zheng Huan (郑欢), Cai Jin-Xin (蔡金鑫). Chin. Phys. B, 2014, 23(4): 048502.
[9] Improved performance of InGaN light-emitting diodes with a novel sawtooth-shaped electron blocking layer
Wang Tian-Hu (王天虎), Xu Jin-Liang (徐进良). Chin. Phys. B, 2013, 22(8): 088504.
[10] Advantages of an InGaN-based light emitting diode with a p-InGaN/p-GaN superlattice hole accumulation layer
Liu Chao (刘超), Ren Zhi-Wei (任志伟), Chen Xin (陈鑫), Zhao Bi-Jun (赵璧君), Wang Xing-Fu (王幸福), Yin Yi-An (尹以安), Li Shu-Ti (李述体). Chin. Phys. B, 2013, 22(5): 058502.
[11] Performance improvement of blue light-emitting diodes with an AlInN/GaN superlattice electron-blocking layer
Zhao Fang (赵芳), Yao Guang-Rui (姚光锐), Song Jing-Jing (宋晶晶), Ding Bin-Bin (丁彬彬), Xiong Jian-Yong (熊建勇), Su Chen (苏晨), Zheng Shu-Wen (郑树文), Zhang Tao (张涛), Fan Guang-Han (范广涵). Chin. Phys. B, 2013, 22(5): 058503.
[12] Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes
Jiang Rong (江蓉), Lu Hai (陆海), Chen Dun-Jun (陈敦军), Ren Fang-Fang (任芳芳), Yan Da-Wei (闫大为), Zhang Rong (张荣), Zheng You-Dou (郑有炓). Chin. Phys. B, 2013, 22(4): 047805.
[13] Efficiency enhancement of an InGaN light-emitting diode with a p-AlGaN/GaN superlattice last quantum barrier
Xiong Jian-Yong (熊建勇), Zhao Fang (赵芳), Fan Guang-Han (范广涵), Xu Yi-Qin (许毅钦), Liu Xiao-Ping (刘小平), Song Jing-Jing (宋晶晶), Ding Bin-Bin (丁彬彬), Zhang Tao (张涛), Zheng Shu-Wen (郑树文). Chin. Phys. B, 2013, 22(11): 118504.
[14] Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer
Xiong Jian-Yong (熊建勇), Xu Yi-Qin (许毅钦), Zhao Fang (赵芳), Song Jing-Jing (宋晶晶), Ding Bin-Bin (丁彬彬), Zheng Shu-Wen (郑树文), Zhang Tao (张涛), Fan Guang-Han (范广涵). Chin. Phys. B, 2013, 22(10): 108505.
[15] Improvement of characteristics of InGaN light-emitting diode by using a staggered AlGaN electron-blocking layer
Chen Jun (陈峻), Fan Guang-Han (范广涵), Zhang Yun-Yan (张运炎). Chin. Phys. B, 2013, 22(1): 018504.
No Suggested Reading articles found!