Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017301    DOI: 10.1088/1674-1056/28/1/017301
RAPID COMMUNICATION Prev   Next  

Pressure-mediated contact quality improvement between monolayer MoS2 and graphite

Mengzhou Liao(廖梦舟)1,2, Luojun Du(杜罗军)1,2,6, Tingting Zhang(张婷婷)1,2,3, Lin Gu(谷林)1,2, Yugui Yao(姚裕贵)3, Rong Yang(杨蓉)1,2,4, Dongxia Shi(时东霞)1,2,4, Guangyu Zhang(张广宇)1,2,4,5
1 CAS Key Laboratory of Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelecentronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China;
4 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China;
5 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China;
6 Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Finland
Abstract  

Two-dimensional (2D) materials and their heterostructures have attracted a lot of attention due to their unique electronic and optical properties. MoS2 as the most typical 2D semiconductors has great application potential in thin film transistors, photodetector, hydrogen evolution reaction, memory device, etc. However, the performance of MoS2 devices is limited by the contact resistance and the improvement of its contact quality is important. In this work, we report the experimental investigation of pressure-enhanced contact quality between monolayer MoS2 and graphite by conductive atom force microscope (C-AFM). It was found that at high pressure, the contact quality between graphite and MoS2 is significantly improved. This pressure-mediated contact quality improvement between MoS2 and graphite comes from the enhanced charge transfer between MoS2 and graphite when MoS2 is stretched. Our results provide a new way to enhance the contact quality between MoS2 and graphite for further applications.

Keywords:  MoS2/graphite heterojunction      C-AFM      pressure      contact quality  
Received:  18 October 2018      Revised:  11 November 2018      Accepted manuscript online: 
PACS:  73.43.Fj (Novel experimental methods; measurements)  
  73.50.-h (Electronic transport phenomena in thin films)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: 

Project supported by the National Key R&D Program, China (Grant No. 2016YFA0300904), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH004), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDPB06 and XDB07010100), and the National Natural Science Foundation of China (Grant Nos. 61734001 and 51572289).

Corresponding Authors:  Dongxia Shi, Guangyu Zhang     E-mail:  dxshi@iphy.ac.cn;gyzhang@iphy.ac.cn

Cite this article: 

Mengzhou Liao(廖梦舟), Luojun Du(杜罗军), Tingting Zhang(张婷婷), Lin Gu(谷林), Yugui Yao(姚裕贵), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇) Pressure-mediated contact quality improvement between monolayer MoS2 and graphite 2019 Chin. Phys. B 28 017301

[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[3] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674
[4] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[5] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
[6] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P and Steiner M 2013 Nano Lett. 13 1416
[7] Li Y, Wang H, Xie L, Liang Y, Hong G and Dai H 2011 J. Am. Chem. Soc. 133 7296
[8] Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246
[9] Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q and Zhang H 2012 Small 8 63
[10] Kaushik N, Nipane A, Basheer F, Dubey S, Grover S, Deshmukh M M and Lodha S 2014 Appl. Phys. Lett. 105 113505
[11] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 Nano Lett. 13 100
[12] Chen J R, Odenthal P M, Swartz A G, Floyd G C, Wen H, Luo K Y and Kawakami R K 2013 Nano Lett. 13 3106
[13] Kang J H, Liu W and Banerjee K 2014 Appl. Phys. Lett. 104 093106
[14] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128
[15] Liu Y, Wu H, Cheng H C, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N O, Huang Y and Duan X 2015 Nano Lett. 15 3030
[16] Xie L, Liao M, Wang S, Yu H, Du L, Tang J, Zhao J, Zhang J, Chen P, Lu X, Wang G, Xie G, Yang R, Shi D and Zhang G 2017 Adv. Mater. 29 1702522
[17] Allain A, Kang J H, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
[18] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotechnol. 8 826
[19] Yu L, Lee Y H, Ling X, Santos E J, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H and Palacios T 2014 Nano Lett. 14 3055
[20] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[21] Manzeli S, Allain A, Ghadimi A and Kis A 2015 Nano Lett. 15 5330
[22] Johari P and Shenoy V B 2012 ACS Nano 6 5449
[23] Song S, Keum D H, Cho S, Perello D, Kim Y and Lee Y H 2016 Nano Lett. 16 188
[24] Du L J, Yu H, Liao M Z, Wang S P, Xie L, Lu X B, Zhu J Q, Li N, Shen C, Chen P, Yang R, Shi D X and Zhang G Y 2017 Appl. Phys. Lett. 111 263106
[25] Johnson K L 1985 Contact Mechanics (Cambridge: Cambridge University Press)
[26] Yu W J, Li Z, Zhou H L, Chen Y, Wang Y, Huang Y and Duan X F 2013 Nat. Mater. 12 246
[27] Jahangir I, Uddin M A, Singh A K, Koley G and Chandrashekhar M V S 2017 Appl. Phys. Lett. 111 142101
[28] Liu X and Li Z 2015 J. Phys. Chem. Lett. 6 3269
[29] Sader J E, Chon J W M and Mulvaney P 1999 Rev. Sci. Instrum. 70 3967
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[4] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[7] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[8] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[9] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[10] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
[15] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
No Suggested Reading articles found!