Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016101    DOI: 10.1088/1674-1056/28/1/016101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Photoluminescence of SiV centers in CVD diamond particles with specific crystallographic planes

Ying-Shuang Mei(梅盈爽)1, Cheng-Ke Chen(陈成克)1, Mei-Yan Jiang(蒋梅燕)1, Xiao Li(李晓)1, Yin-Lan Ruan(阮银兰)2, Xiao-Jun Hu(胡晓君)1
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
2 ARC Centre of Excellence in Nanoscale Biophotonics, Institute of Photonics and Advanced Sensing, University of Adelaide, Adelaide 5005, Australia
Abstract  

We prepared the isolated micrometer-sized diamond particles without seeding on the substrate in hot filament chemical vapor deposition. The diamond particles with specific crystallographic planes and strong silicon-vacancy (SiV) photoluminescence (PL) have been prepared by adjusting the growth pressure. As the growth pressure increases from 2.5 to 3.5 kPa, the diamond particles transit from composite planes of {100} and {111} to only smooth {111} planes. The {111}-faceted diamond particles present better crystal quality and stronger normalized intensity of SiV PL with a narrower bandwidth of 5 nm. Raman depth profiles show that the SiV centers are more likely to be formed on the near-surface areas of the diamond particles, which have poorer crystal quality and greater lattice stress than the inner areas. Complex lattice stress environment in the near-surface areas broadens the bandwidth of SiV PL peak. These results provide a feasible method to prepare diamond particles with specific crystallographic planes and stronger SiV PL.

Keywords:  diamond particle      SiV center      photoluminescence      crystallographic planes  
Received:  03 August 2018      Revised:  17 October 2018      Accepted manuscript online: 
PACS:  61.72.jn (Color centers)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  81.05.ug (Diamond)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY18E020013).

Corresponding Authors:  Xiao-Jun Hu     E-mail:  huxj@zjut.edu.cn

Cite this article: 

Ying-Shuang Mei(梅盈爽), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Yin-Lan Ruan(阮银兰), Xiao-Jun Hu(胡晓君) Photoluminescence of SiV centers in CVD diamond particles with specific crystallographic planes 2019 Chin. Phys. B 28 016101

[1] Arnault J C 2017 Nanodiamonds: Advanced Material Analysis, Properties and Applications (Netherlands: Elsevier) pp. 365-476
[2] Xu H, Ye H T, Coathup D, Mitrovic I Z, Weerakkody A D and Hu X J 2017 Appl. Phys. Lett. 110 033102
[3] Jiang M Y, Yu H, Li X, Lu S H and Hu X J 2017 Electrochim. Acta 258 61
[4] Aharonovich I, Greentree A D and Prawer S 2011 Nat. Photon. 5 397
[5] Pezzagna S, Rogalla D, Wildanger D, Meijer J and Zaitsev A 2011 New J. Phys. 13 035024
[6] Goss J P, Jones R, Breuer S J, Briddon P R and Oberg S 1996 Phys. Rev. Lett. 77 3041
[7] Muller T, Hepp C, Pingault B, Neu E, Gsell S and Schreck M 2014 Nat. Commun. 5 3328
[8] Merson T D, Castelletto S, Aharonovich I, Turbic A, Kilpatrick T J and Turnley A M 2013 Opt. Lett. 38 4170
[9] Vlasov I I, Barnard A S, Ralchenko V G, Lebedev O I, Kanzyuba M V and Saveliev A V 2009 Adv. Mater. 21 808
[10] Rogers L J, Jahnke K D, Doherty M W, Dietrich A, McGuinness L P, Muller C, Teraji T, Sumiya H, Isoya J, Manson N B and Jelezko1 F 2014 Phys. Rev. B 89 235101
[11] Hepp C, Muller T, Waselowski V, Becker J N, Pingault B, Sternschulte H, Steinmüller-Nethl D, Gali A, Maze J R, Atatüre M and Becher C 2014 Phys. Rev. Lett. 112 036405
[12] Sedov V S, Khomich A A, Ralchenko V G, Martyanov A K, Savin S S, Poklonskaya O N and Trofimov N S 2015 J. Coat. Sci. Technol. 2 38
[13] Sun B, Zhang X and Lin Z 1993 Phys. Rev. B 47 9816
[14] Yang S, He Z, Li Q, Zhu D and Gong J 2008 Diam. Relat. Mat. 17 2075
[15] Zhang Y and Chen G 1995 J. Vac. Sci. Technol. A-Vac. Surf. Films. 13 183
[16] Yu Z and Flodstrom A 1997 Diam. Relat. Mat. 6 81
[17] Zhang T, Liu X, Sun F H and Zhang Z M 2015 J. Cryst. Growth. 426 15
[18] Zhang T, Wang X C, Shen B, Sun F H and Zhang Z M 2013 J. Cryst. Growth. 372 49
[19] Stacey A, Aharonovich I, Prawer S and Butler J E 2009 Diam. Relat. Mater. 18 51
[20] Tzeng Y K, Zhang J L, Lu H, Ishiwata H, Dahl J, Carlson R M K, Yan H, Schreiner P R, Vuc?ković J, Shen Z X, Melosh N and Chu S 2017 Nano. Lett. 17 1489
[21] Singh S and Catledge S A 2013 J. Appl. Phys. 113 044701
[22] Zhang H, Aharonovich I, Glenn D R, Schalek R, Magyar A P, Lichtman J W, Hu E L and Walsworth R L 2014 Small 10 1908
[23] Mei Y S, Fan D, Lu S H, Shen Y G and Hu X J 2016 J. Appl. Phys. 120 225107
[24] Hu X J, Chen C K and Lu S H 2016 Carbon 98 671
[25] Petráková V, Taylor A, Kratochvílová I, Fendrych F, Vacik J and Kucka J 2012 Adv. Funct. Mater. 22 812
[26] Galář P, Dzurňák B, Varga M, Marton M, Kromka A and Maly P 2014 Opt. Mater. 4 624
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Preparation of spin squeezed state in SiV centers coupled by diamond waveguide
Yong-Hong Ma(马永红), Yuan Xu(许媛), Quan-Zhen Ding(丁全振), and Yu-Sui Chen(陈予遂). Chin. Phys. B, 2021, 30(10): 100311.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
No Suggested Reading articles found!