Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088101    DOI: 10.1088/1674-1056/ab8db0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles

Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君)
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Abstract  The microstructure and Ge-V photoluminescent properties of diamond particles treated by microwave oxygen plasma are investigated. The results show that in the first 5 min of microwave plasma treatment, graphite and disordered carbon on the surface of the particles are etched away, so that diamond with regular crystal plane, smaller lattice stress, and better crystal quality is exposed, producing a Ge-V photoluminescence (PL) intensity 4 times stronger and PL peak FWHM (full width at half maximum) value of 6.6 nm smaller than the as-deposited sample. It is observed that the cycles of ‘diamond is converted into graphite and disordered carbon, then the graphite and disordered carbon are etched’ can occur with the treatment time further increasing. During these cycles, the particle surface alternately appears smooth and rough, corresponding to the strengthening and weakening of Ge-V PL intensity, respectively, while the PL intensity is always stronger than that of the as-deposited sample. The results suggest that not only graphite but also disordered carbon weakens the Ge-V PL intensity. Our study provides a feasible way of enhancing the Ge-V PL properties and effectively controlling the surface morphology of diamond particle.
Keywords:  diamond particles      Ge-V center      microwave oxygen plasma treatment      PL enhancement  
Received:  02 April 2020      Revised:  17 April 2020      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  61.72.jn (Color centers)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the Key Project of the National Natural Science Foundation of China (Grant No. U1809210), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), the Belt and Road Initiative International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), the European Union's Horizon 2020 Research and Innovation Staff Exchange Scheme (Grant No. 734578), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY18E020013), and the International Science Technology Cooperation Program, China (Grant No. 2014DFR51160).
Corresponding Authors:  Xiao-Jun Hu     E-mail:  huxj@zjut.edu.cn

Cite this article: 

Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君) Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles 2020 Chin. Phys. B 29 088101

[1] Mochalin V N, Shenderova O, Ho D and Gogotsi Y 2012 Nat. Nanotechnol. 7 11
[2] Kohn E and Denisenko A 2007 Thin Solid Films 515 4333
[3] Aharonovich I, Castelletto S, Simpson D, Su C, Greentree A and Prawer S 2011 Rep. Prog. Phys. 74 076501
[4] Häußler S, Thiering G, Dietrich A, Waasem N, Teraji T, Isoya J, Iwasaki T, Hatano M, Jelezko F and Gali A 2017 New J. Phys. 19 063036
[5] Bhaskar M K, Sukachev D D, Sipahigil A, Evans R E, Burek M J, Nguyen C T, Rogers L J, Siyushev P, Metsch M H and Park H 2017 Phys. Rev. Lett. 118 223603
[6] Jelezko F and Wrachtrup J 2006 Phys. Status Solidi 203 3207
[7] Palyanov Y N, Kupriyanov I N, Borzdov Y M and Surovtsev N V 2015 Sci. Rep. 5 14789
[8] Ekimov E A, Lyapin S, Boldyrev K N, Kondrin M V, Khmelnitskiy R, Gavva V A, Kotereva T y V and Popova M N 2015 JETP Lett. 102 701
[9] Goss J, Briddon P, Rayson M, Sque S and Jones R 2005 Phys. Rev. B 72 035214
[10] Fan J W, Cojocaru I, Becker J, Fedotov I V, Alkahtani M H A, Alajlan A, Blakley S, Rezaee M, Lyamkina A and Palyanov Y N 2018 ACS Photon. 5 765
[11] Bray K, Regan B, Trycz A, Previdi R, Seniutinas G, Ganesan K, Kianinia M, Kim S and Aharonovich I 2018 ACS Photonics 5 4817
[12] Palyanov Y N, Kupriyanov I N, Borzdov Y M, Khokhryakov A F and Surovtsev N V 2016 Crystal Growth & Design 16 3510
[13] Palyanov Y N, Kupriyanov I N, Borzdov Y M and Nechaev D V 2018 Diamond and Related Materials 89 1
[14] Trycz A, Regan B, Kianinia M, Bray K, Toth M and Aharonovich I 2019 Opt. Mater. Express 9 4708
[15] Sedov V, Martyanov A, Savin S, Bolshakov A, Bushuev E, Khomich A, Kudryavtsev O, Krivobok V, Nikolaev S and Ralchenko V 2018 Diamond and Related Materials 90 47
[16] Iwasaki T, Ishibashi F, Miyamoto Y, Doi Y, Kobayashi S, Miyazaki T, Tahara K, Jahnke K D, Rogers L J and Naydenov B 2015 Sci. Rep. 5 12882
[17] Zhang H C, Chen C K, Mei Y S, Li X, Jiang M Y and Hu X J 2019 Chin. Phys. B 28 076103
[18] Hauf M, Grotz B, Naydenov B, Dankerl M, Pezzagna S, Meijer J, Jelezko F, Wrachtrup J, Stutzmann M and Reinhard F 2011 Phys. Rev. B 83 081304
[19] Fu K M C, Santori C, Barclay P E and Beausoleil R G 2010 Appl. Phys. Lett. 96 121907
[20] Bradac C, Gaebel T, Pakes C I, Say J M, Zvyagin A V and Rabeau J R 2013 Small 9 132
[21] Cui S and Hu E L 2013 Appl. Phys. Lett. 103 051603
[22] Kaviani M, Deák P, Aradi B l, Frauenheim T, Chou J P and Gali A 2014 Nano Lett. 14 4772
[23] Mei Y, Fan D, Lu S, Shen Y and Hu X 2016 J. Appl. Phys. 120 225107
[24] Mei Y, Chen C, Fan D, Jiang M, Li X and Hu X 2019 Nanoscale 11 656
[25] Stanishevsky A V, Walock M J and Catledge S A 2015 Appl. Surf. Sci. 357 1403
[26] Chen C, Mei Y, Cui J, Li X, Jiang M, Lu S and Hu X 2018 Carbon 139 982
[27] Tzeng Y K, Zhang J L, Lu H, Ishiwata H, Dahl J, Carlson R M, Yan H, Schreiner P R, Vučković J and Shen Z X 2017 Nano Lett. 17 1489
[28] Huang K, Hu X, Xu H, Shen Y and Khomich A 2014 Appl. Surf. Sci. 317 11
[29] Hu X, Ye J, Liu H, Shen Y, Chen X and Hu H 2011 J. Appl. Phys. 109 053524
[30] Sails S R, Gardiner D J, Bowden M, Savage J and Rodway D 1996 Diamond and Related Materials 5 589
[31] Osswald S, Yushin G, Mochalin V, Kucheyev S O and Gogotsi Y 2006 J. Am. Chem. Soc. 128 11635
[32] Smith B R, Gruber D and Plakhotnik T 2010 Diamond and Related Materials 19 314
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[3] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[4] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[5] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[6] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[7] Relationship between the spatial position of the seed and growth mode for single-crystal diamond grown with an enclosed-type holder
Wen-Liang Xie(谢文良), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108106.
[8] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[9] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[10] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[11] Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2020, 29(12): 128103.
[12] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[13] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[14] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[15] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
No Suggested Reading articles found!