|
|
Preparation of spin squeezed state in SiV centers coupled by diamond waveguide |
Yong-Hong Ma(马永红)1,†, Yuan Xu(许媛)1, Quan-Zhen Ding(丁全振)2, and Yu-Sui Chen(陈予遂)3,‡ |
1 School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China; 2 Department of Physics, and Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; 3 Department of Physics, New York Institute of Technology, Old Westbury, NY 11568, USA |
|
|
Abstract Spin squeezing is a fascinating manifestation of many-particle entanglement and one of the most promising quantum resources. In this paper, we propose a novel realization of a solid-state quantum spin squeezing by applying SiV centers embedded in a diamond waveguide with the help of a microwave field. The phenomena about the generation of spin squeezing are analyzed numerically in Markovian environments. Our analysis shows that spin squeezing can be generated with the microwave field's help under some realistic conditions, despite the presence of dephasing and mechanical damping. This solid-state spin squeezing based on SiV centers in diamonds might be applied to magnetometers, interferometry, and other precise measurements.
|
Received: 03 March 2021
Revised: 07 April 2021
Accepted manuscript online: 27 May 2021
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
61.72.jn
|
(Color centers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11664029) and the Inner Mongolia Natural Science Foundation, China (Grant No. 2021MS01012). |
Corresponding Authors:
Yong-Hong Ma, Yu-Sui Chen
E-mail: myh_dlut@126.com;yusui.chen@nyit.edu
|
Cite this article:
Yong-Hong Ma(马永红), Yuan Xu(许媛), Quan-Zhen Ding(丁全振), and Yu-Sui Chen(陈予遂) Preparation of spin squeezed state in SiV centers coupled by diamond waveguide 2021 Chin. Phys. B 30 100311
|
[1] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138 [2] Ma J, Wang X, Sun C P and Nori F 2011 Phys. Rep. 509 89 [3] Bennett S, Yao N Y, Otterbach J, Zoller P, Rabl P and Lukin M D 2013 Phys. Rev. Lett. 110 156402 [4] Chen D, Zheludev N and Gao W B 2020 Adv. Quantum Technol. 3 1900069 [5] Nguyen C, Sukachev D, Bhaskar M, Machielse B, Levonian D, Knall E, Stroganov P, Chia C, Burek M and Riedinger R 2019 Phys. Rev. B 100 165428 [6] Vitagliano G, Hyllus P, Egusquiza I L and Tóth G 2011 Phys. Rev. Lett. 107 240502 [7] Sau J D, Leslie S R, Cohen M L and Stamper-Kurn D M 2010 New J. Phys 12 085011 [8] Tóth G, Knapp C, Gühne O, Briegel H J, Tóth G, Knapp C, Gühne O and Briegel H J 2009 Phys. Rev. A 79 042334 [9] Wineland D J, Bollinger J J, Itano W M, Moore F and Heinzen D 1992 Phys. Rev. A 46 R6797 [10] Laudat T, Dugrain V, Mazzoni T, Huang M Z, Alzar C L G, Sinatra A, Rosenbusch P and Reichel J 2018 New J. Phys. 20 073018 [11] Jo G-B, Shin Y, Will S, Pasquini T, Saba M, Ketterle W, Pritchard D E, Vengalattore M and Prentiss M 2007 Phys. Rev. Lett. 98 030407 [12] Li W, Tuchman A K, Chien H C and Kasevich M A 2007 Phys. Rev. Lett. 98 040402 [13] Hosten O, Engelsen N J, Krishnakumar R and Kasevich M A 2016 Nature 529 505 [14] Cox K C, Greve G P, Weiner J M and Thompson J K 2016 Phys. Rev. Lett. 116 093602 [15] Mertens S and Moore C 2018 Phys. Rev. E 98 022120 [16] Sofiev M, Berger U, Prank M, Vira J, Arteta J, Belmonte J, Bergmann K C, Chéroux F, Elbern H and Friese E 2015 Atmos. Chem. Phys. 15 8115 [17] Vengalattore M, Higbie J, Leslie S, Guzman J, Sadler L and Stamper-Kurn D 2007 Phys. Rev. Lett. 98 200801 [18] Johnson B, Reed M, Houck A A, Schuster D, Bishop L S, Ginossar E, Gambetta J, DiCarlo L, Frunzio L and Girvin S 2010 Nat. Phys. 6 663 [19] Saffman M, Oblak D, Appel J and Polzik E 2009 Phys. Rev. A 79 023831 [20] Shah V, Vasilakis G and Romalis M 2010 Phys. Rev. Lett. 104 013601 [21] Auccaise R, Araujo-Ferreira A, Sarthour R, Oliveira I, Bonagamba T J and Roditi I 2015 Phys. Rev. Lett. 114 043604 [22] Lewis-Swan R J, Norcia M A, Cline J R, Thompson J K and Rey A M 2018 Phys. Rev. Lett. 121 070403 [23] Bradac C, Gao W, Forneris J, Trusheim M E and Aharonovich I 2019 Nat. Commun. 10 1 [24] Ma Y H, Zhang X F, Song J and Wu E 2016 Ann. Phys. 369 36 [25] Dooley S, Yukawa E, Matsuzaki Y, Knee G C, Munro W J and Nemoto K 2016 New J. Phys. 18 053011 [26] Ma Y H and Zhang X F 2014 Phys. Rev. B 89 144113 [27] Ma Y H, Ding Q Z and Yu T 2020 Phys. Rev. A 101 022327 [28] Xia K and Twamley J 2016 Phys. Rev. B 94 205118 [29] Maity S, Shao L, Bogdanovi S, Meesala S, Sohn Y I, Sinclair N, Pingault B, Chalupnik M, Chia C and Zheng L 2020 Nat. Commun. 11 1 [30] Lee D, Lee K W, Cady J V, Ovartchaiyapong P and Jayich A C B 2017 J. Opt. 19 033001 [31] Becker J N and Becher C 2017 Phys. Status Solidi A 214 1700586 [32] Lindner S, Bommer A, Muzha A, Krueger A, Gines L, Mandal S, Williams O, Londero E, Gali A and Becher C 2018 New J. Phys. 20 115002 [33] Li P B, Li X X and Nori F 2019 arXiv:1901.04650 [34] Jahnke K D, Sipahigil A, Binder J M, Doherty M W, Metsch M, Rogers L J, Manson N B, Lukin M D and Jelezko F 2015 New J. Phys. 17 043011 [35] Li B, Li X, Li P and Li T 2020 Adv. Quantum Technol. 3 2000034 [36] Rose B C, Huang D, Zhang Z H, Stevenson P, Tyryshkin A M, Sangtawesin S, Srinivasan S, Loudin L, Markham M L and Edmonds A M 2018 Science 361 60 [37] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F and Lukin M D 2017 Phys. Rev. Lett. 119 223602 [38] Meesala S, Sohn Y I, Pingault B, Shao L, Atikian H A, Holzgrafe J, Gündoan M, Stavrakas C, Sipahigil A and Chia C 2018 Phys. Rev. B 97 205444 [39] Weinzetl C, Görlitz J, Becker J N, Walmsley I A, Poem E, Nunn J and Becher C 2019 Phys. Rev. Lett. 122 063601 [40] Lemonde M A, Meesala S, Sipahigil A, Schuetz M, Lukin M, Loncar M and Rabl P 2018 Phys. Rev. Lett. 120 213603 [41] Qiao Y F, Li H Z, Dong X L, Chen J Q, Zhou Y and Li P B 2020 Phys. Rev. A 101 042313 [42] Song W, Yang W, An J and Feng M 2017 Opt. Express 25 19226 [43] Bray K, Regan B, Trycz A, Previdi R, Seniutinas G, Ganesan K, Kianinia M, Kim S and Aharonovich I 2018 ACS Photonics 5 4817 [44] Bhaskar M K, Sukachev D D, Sipahigil A, Evans R E, Burek M J, Nguyen C T, Rogers L J, Siyushev P, Metsch M H and Park H 2017 Phys. Rev. Lett. 118 223603 [45] Golter D A, Oo T, Amezcua M, Lekavicius I, Stewart K A and Wang H 2016 Phys. Rev. X 6 041060 [46] Jin G R, Liu Y C and Liu W M 2009 New J. Phys. 11 073049 [47] Evans R E, Sipahigil A, Sukachev D D, Zibrov A S and Lukin M D 2016 Phys. Rev. Applied 5 044010 [48] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|