Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 013101    DOI: 10.1088/1674-1056/28/1/013101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First-principles study of structural, electronic, elastic, and thermal properties of Imm2-BC

Qiang Li(李强)1, Zhen-Ling Wang(王振玲)1, Yu-Cheng Yu(于玉城)1, Lan Ma(马兰)1, Shao-Li Yang(杨绍利)1, Hai-Bo Wang(王海波)1, Rui Zhang(张锐)2
1 College of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, China;
2 Condensed Matter Science and Technology Institute and Department of Physics, Harbin Institute of Technology, Harbin 150080, China
Abstract  

Using the first-principles method, we predict an orthorhombic boron-carbon binary structure with space group Imm2. This structure is verified to be dynamically and mechanically stable, and possesses a cavity of 27.5 Å2 that makes it a potential molecular sieve material. The C sp2 and sp3 hybridized bonding in Imm2 BC is an important factor for its structural stability. The energy band calculations reveal that Imm2 BC is a semiconductor with a band gap of 1.3 eV and has a promising application in the electro-optic field. The lattice thermal conductivity along the crystal [100] direction at room temperature is 186 W·m-1·K-1, that is about 5 times higher than those along the [010] and [001] directions, which stems from the different group velocity along the crystal direction. Moreover, the acoustic-optical coupling is important for heat transport in Imm2 BC, and the contribution of optical phonons to lattice thermal conductivity in the [100], [010], and [001] directions is 49%, 59%, and 61%, respectively. This study gives a fundamental understanding of the structural, electronic, elastic, and heat transport properties in Imm2 BC, further enriching the family of boron-carbon binary compounds.

Keywords:  first principles      boron-carbon binary      electronic structure      thermal properties  
Received:  28 August 2018      Revised:  17 October 2018      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
  77.84.Cg (PZT ceramics and other titanates)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB632900), the Science and Technology Planning Project of Sichuan Province, China (Grant Nos. 2018JY0422 and 2018JY0325), the Department of Education of Sichuan Province, China (Grant No. 18ZA0290), and the Doctor Research Start-up Foundation of Panzhihua University, China (Grant No. 0210600049).

Corresponding Authors:  Qiang Li     E-mail:  wslypq@126.com

Cite this article: 

Qiang Li(李强), Zhen-Ling Wang(王振玲), Yu-Cheng Yu(于玉城), Lan Ma(马兰), Shao-Li Yang(杨绍利), Hai-Bo Wang(王海波), Rui Zhang(张锐) First-principles study of structural, electronic, elastic, and thermal properties of Imm2-BC 2019 Chin. Phys. B 28 013101

[1] Suri A K, Subramanian C, Sonber J K and Murthy T S R C 2010 Int. Mater. Rev. 55 4
[2] Emin D 2006 J. Solid State Chem. 179 2791
[3] Bouchacourt M and Thevenot F 1981 J. Less-Common Met 82 227
[4] Bouchacourt M and Thevenot F 1979 J. Less-Common Met 67 327
[5] Zinin P V, Ming L C, Kudryashov I, Konishi N and Sharma S K 2007 J. Raman Spectrosc. 38 1362
[6] Solozhenko V L, Kurakevych O O, Andrault D, Godec Y L and Mezouar M 2009 Phys. Rev. Lett. 102 015506
[7] Saal J E, Shang S and Liu Z K 2007 Appl. Phys. Lett. 91 231915
[8] Tomanek D, Wentzcovitch R M, Louie S G and Cohen M L 1988 Phys. Rev. B 37 3134
[9] Luo X, Yang J, Liu H, Wu X, Wang Y, Ma Y, Wei S H, Gong X and Xiang H 2011 J. Am. Chem. Soc. 133 16285
[10] Li Q, Zhang R, Lv T and He Z 2016 Ceram Int. 42 4026
[11] Xu L, Zhao Z, Wang Q, Wang L-M, Xu B, He J and Tian Y 2011 J. Appl. Phys. 110 013501
[12] Hu Q, Wu Q, Ma Y, Zhang L, Liu Z, He J, Sun H, Wang H T and Tian Y 2006 Phys. Rev. B 73 214116
[13] Li Q, Rui Z, Lv T Q and Zheng L M 2015 Chin. Phys. B 24 053101
[14] Li Q, Zhang R and Lv T 2017 Comp Mater. Sci. 128 22
[15] Qi Y M, Chen H L, Jin P, Lu H Y and Cui C X 2018 Acta Phys. Sin. 67 067101 (in Chinese)
[16] Zhang Z, Wang H, Wang K Y, An H, Liu B, Wu J C and Zou Y 2018 Acta Phys. Sin. 67 046101 (in Chinese)
[17] Cheng W, Fu Y L, Ying M J and Zhang F S 2017 Chin. Phys. Lett. 34 127101
[18] Shi J, Gao Y, Wang X L and Yun S N 2017 Chin. Phys. Lett. 34 087701
[19] Giannozzi P 2009 J. Phys: Condens Matter 21 395502
[20] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[21] Garrity K F, Bennett J W, Rabe K M and Vanderbilt D 2014 Comp Mater. Sci. 81 446
[22] Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306
[23] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[24] Yu R, Zhu J and Ye H Q 2010 Comput. Phys. Commun. 181 671
[25] Teii K, Ito H, Katayama N and Matsumoto S 2015 J. Appl. Phys. 117 055710
[26] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[27] Piskunov S, Heifets E, Eglitis R I and Borstel G 2004 Comp Mater. Sci. 29 165
[28] Hill R 1963 J. Mech. Phys. Solids 11 357
[29] Bachmann F, Hielscher R and Schaeben H 2010 Solid State Phenom. 160 63
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[10] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[11] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[12] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[13] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[14] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[15] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
No Suggested Reading articles found!