|
|
Analytical treatment of Anderson localization in a chain of trapped ions experiencing laser Bessel beams |
Jun Wen(文军)1,2, Jian-Qi Zhang(张建奇)1, Lei-Lei Yan(闫磊磊)1, Mang Feng(冯芒)1 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Trapped ions, under electromagnetic confinement and Coulomb repulsion, can behave as non-interacting particles in one-dimensional lattices. Here we explore analytically the possible effects regarding Anderson localization in a chain of trapped ions experiencing laser Bessel beams. Under an experimentally feasible condition, we predict an analytical form of the energy-dependent mobility edges, which is verified to be in good agreement with the exact numerical results except for the top band. Some other important properties regarding the phonon localization in the ion chain are also discussed both analytically and numerically. Our results are relevant to experimental observation of localization-delocalization transition in the ion trap and helpful for deeper understanding of the rich phenomena due to long-range phonon hopping.
|
Received: 18 September 2018
Revised: 14 November 2018
Accepted manuscript online:
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
05.50.+q
|
(Lattice theory and statistics)
|
|
64.60.Cn
|
(Order-disorder transformations)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11734018, 11674360, 11404377, and 91636220). |
Corresponding Authors:
Mang Feng
E-mail: mangfeng@wipm.ac.cn
|
Cite this article:
Jun Wen(文军), Jian-Qi Zhang(张建奇), Lei-Lei Yan(闫磊磊), Mang Feng(冯芒) Analytical treatment of Anderson localization in a chain of trapped ions experiencing laser Bessel beams 2019 Chin. Phys. B 28 010306
|
[1] |
Anderson P W 1958 Phys. Rev. 109 1492
|
[2] |
Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N and Silberberg Y 2009 Phys. Rev. Lett. 103 013901
|
[3] |
Roati G, Errico C D, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
|
[4] |
Billy J, Josse V, Zuo Z C, Bernard A, Hambrecht B, Lugan P, Clément D, Plencia L S, Bouyer P and Aspect A 2008 Nature 453 891
|
[5] |
Lye J E, Fallani L, Fort C, Guarrera V, Modugno M, Wiersam D S and Inguscio M 2007 Phys. Rev. A 75 061603
|
[6] |
Shadrivov I V, Bliokh K Y, Bliokh Y P, Freilikher V and Kivshar Y S 2010 Phys. Rev. Lett. 104 123902
|
[7] |
Conti C 2012 Phys. Rev. A 86 061801(R)
|
[8] |
Eleuch H, Hilke M, and MacKenzie R 2017 Phys. Rev. A 95 062114
|
[9] |
Sheinfux H H, Lumer Y, Ankonina G, Genack A Z, Bartal G and Segev M 2017 Science 356 953
|
[10] |
Aubry S and André G 1979 Ann, Isr. Phys. Soc. 3 133
|
[11] |
Kraus Y E and Zilberber O 2012 Phys. Rev. Lett 109 116404
|
[12] |
Liu F, Ghosh S and Chong Y D 2015 Phys. Rev. B 91 014108
|
[13] |
Ke Y G, Qin X Z, Mei F, Zhong H H, Kivshar Y S and Lee C H 2016 Laser & Photonics Reviews 10 995
|
[14] |
Albert M and Leboeuf P 2010 Phys. Rev. A 81 013614
|
[15] |
Bermudez A, Martin-Delgado A and Porras D 2010 New J. Phys. 12 123016
|
[16] |
Modugno M 2009 New J. Phys. 11 033023
|
[17] |
Gopalakrishnan S 2017 Phys. Rev. B 96 054202
|
[18] |
Sarma S D, He S and Xie X C 1998 Phys. Rev. Lett. 61 2144
|
[19] |
Biddle J and Sarma S D 2009 Phys. Rev. Lett. 104 070601
|
[20] |
Zhang W, Yang R, Zhao Y, Duan S, Zhang P and Ulloa S E 2010 Phys. Rev. B 81 214202
|
[21] |
Biddle J, Jr D J P, Wang B and Sarma S D 2011 Phys. Rev. B 83 075105
|
[22] |
Dufour G and Orso G 2102 Phys. Rev. Lett. 109 155306
|
[23] |
Liu X M, Du Z Z, Cheng W W and Liu J M 2015 Int. J. Theor. Phys. 54 30033
|
[24] |
Qin P Q, Yin C H and Chen S 2014 Phys. Rev. B 90 054303
|
[25] |
Lin G D, Zhu S L, Islam R, Kim K, Chang M S, Korenblit S, Monroe C and Duan L M 2009 Europhys. Lett. 86 60004
|
[26] |
Bermudez A, Bruderer M and Plenio M B 2013 Phys. Rev. Lett. 111 040601
|
[27] |
Reamm M, Pruttivarasin T and Häffner H 2014 New J. Phys. 16 063062
|
[28] |
Abdelrahman A, Khosravani O, Gessner M, Buchleitner A, Breuer H P, Gorman D, Masuda R, Pruttivarasin T, Ramm M, Schindler P and Häffner H 2017 Nat. Commun. 8 15712
|
[29] |
Wen J, Zhang J Q, Yan L L, Chen L, Cai X M and Feng M 2018 Phys. Rev. A 98 013829
|
[30] |
Blümel R and Smilansky U 1984 Phys. Rev. Lett. 52 137
|
[31] |
Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|