|
|
Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle |
Ying Guo(郭迎)1,2, Yu Su(苏玉)2, Jian Zhou(周健)2, Ling Zhang(张玲)2, Duan Huang(黄端)2 |
1 School of Physics and Information Science, Hunan Normal University, Changsha 410006, China;
2 School of Automation, Central South University, Changsha 410083, China |
|
|
Abstract Continuous-variable quantum key distribution (CVQKD) protocols with entanglement in the middle (EM) enable long maximal transmission distances for quantum communications. For the security analysis of the protocols, it is usually assumed that Eve performs collective Gaussian attacks and there is a lack of finite-size analysis of the protocols. However, in this paper we consider the finite-size regime of the EM-based CVQKD protocols by exposing the protocol to collective attacks and coherent attacks. We differentiate between the collective attacks and the coherent attacks while comparing asymptotic key rate and the key rate in the finite-size scenarios. Moreover, both symmetric and asymmetric configurations are collated in a contrastive analysis. As expected, the derived results in the finite-size scenarios are less useful than those acquired in the asymptotic regime. Nevertheless, we find that CVQKD with entanglement in the middle is capable of providing fully secure secret keys taking the finite-size effects into account with transmission distances of more than 30 km.
|
Received: 26 June 2018
Revised: 26 October 2018
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61572529, 61871407, and 61801522) and the China Postdoctoral Science Foundation (Grant Nos. 2013M542119 and 2014T70772). |
Corresponding Authors:
Duan Huang
E-mail: duanhuang@csu.edu.cn
|
Cite this article:
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端) Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle 2019 Chin. Phys. B 28 010305
|
[1] |
Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
|
[2] |
Zeng G H 2010 Quantum Private Communication (Berlin: Springer-Verlag Press) Chap. 3
|
[3] |
Takeda S, Fuwa M, van Loock P and Furusawa A 2015 Phys. Rev. Lett. 114 100501
|
[4] |
Gessner M, Pezzé L and Smerzi A 2016 Phys. Rev. A 94 020101
|
[5] |
Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 20 4162
|
[6] |
Wang S, Chen W, Yin Z Q, He D Y, Hui C, Hao P L, Fan-Yuan G J, Wang C, Zhang L J, Kuang J, Liu S F, Zhou Z, Wang Y G, Guo G C and Han Z F 2018 Opt. Lett. 43 2030
|
[7] |
Wang S, Yin Z Q, Chau H F, Chen W, Wang C, Guo G C and Han Z F 2018 Quantum Sci. Technol. 3 025006
|
[8] |
Yin Z Q, Wang S, Chen W, Han Y G, Wang R, Guo G C and Han Z F 2018 Nat. Commun. 9 457
|
[9] |
Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
|
[10] |
Wang C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2017 Optica 4 1016
|
[11] |
Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Song X T, Li F Y, Wang D, Chen H, Han Y G, Huang J Z, Guo J F, Hao P L, Li M, Zhang C M, Liu D, Liang W Y, Miao C H, Wu P, Guo G C and Han Z F 2014 Opt. Express 22 21739
|
[12] |
Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
|
[13] |
Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
|
[14] |
Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
|
[15] |
Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
|
[16] |
Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
|
[17] |
Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D and Zeng G H 2018 Phys. Rev. A 97 052326
|
[18] |
Gong L, Song H, He C, Liu Y and Zhou N 2014 Phys. Scr. 89 035101
|
[19] |
Song H, Gong L, He C, Liu Y and Zhou N 2012 Acta Phys. Sin. 61 154206 (in Chinese)
|
[20] |
Huang P, Fang J and Zeng G H 2014 Phys. Rev. A 89 042330
|
[21] |
Ma H X, Bao W S and Li H W 2016 Chin. Phys. B 25 080309
|
[22] |
Liu W Q, Peng J Y, Huang P, Huang D and Zeng G H 2017 Opt. Express 25 19429
|
[23] |
Huang D, Fang J, Wang C, Huang P and Zeng G H 2013 Chin. Phys. Lett. 30 114209
|
[24] |
Huang D, Lin D K, Huang P, Wang C, Liu W Q, Fang S H and Zeng G H 2015 Opt. Express 23 17511
|
[25] |
Huang D, Huang P, Wang T, Li H S, Zhou Y M and Zeng G H 2016 Phys. Rev. A 94 032305
|
[26] |
Leverrier A, García-Patrón R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
|
[27] |
Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
|
[28] |
Grosshans F 2005 Phys. Rev. Lett. 94 020504
|
[29] |
Navascués M and Acín A 2005 Phys. Rev. Lett. 94 020505
|
[30] |
Lodewyck J, Debuisschert T, Tualle-Brouri R and Grangier P 2005 Phys. Rev. A 72 050303(R)
|
[31] |
García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
|
[32] |
Navascués M, Grosshans F and Acín A 2006 Phys. Rev. Lett. 97 190502
|
[33] |
Pirandola S, Braunstein S L and Lloyd S 2008 Phys. Rev. Lett. 101 200504
|
[34] |
Leverrier A and Grangier P 2011 Phys. Rev. Lett. 106 259902(E)
|
[35] |
Lin D K, Huang D, Huang P, Peng J Y and Zeng G H 2015 Int. J. Quantum Inf. 13 1550010
|
[36] |
Wang X Y, Zhang Y C, Li Z Y, Xu B J, Yu S and Guo H 2018 Quantum Information and Computation 17 1123
|
[37] |
Milicevic M, Feng C, Zhang L M and Gulak P G 2017 arXiv:1702.07740v2 [quant-ph]
|
[38] |
Weedbrook C 2013 Phys. Rev. A 87 022308
|
[39] |
Guo Y, Liao Q, Wang Y J, Huang D, Huang P and Zeng G H 2017 Phys. Rev. A 95 032304
|
[40] |
Marshall K and Weedbrook C 2014 Phys. Rev. A 90 042311
|
[41] |
Gehring T, Händchen V, Duhme J, Furrer F, Franz T, Pacher C, Werner R F and Schnabel R 2015 Nat. Commun. 6 8795
|
[42] |
Leverrier A 2015 Phys. Rev. Lett. 114 070501
|
[43] |
Leverrier A 2017 Phys. Rev. Lett. 118 200501
|
[44] |
Renner R 2008 International Journal of Quantum Information 06 1
|
[45] |
Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
|
[46] |
Cai R Y Q and Scarani V 2009 New J. Phys. 11 045024
|
[47] |
Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
|
[48] |
Pironio S, Acín A, Brunner N, Gisin N, Massar S and Scarani V 2009 New J. Phys. 11 045021
|
[49] |
Pirandola S, Serafini A and Lloyd S 2009 Phys. Rev. A 79 052327
|
[50] |
Pirandola S 2013 New J. Phys. 15 113046
|
[51] |
Zhang Z Y, Shi R H, Zeng G H and Guo Y 2018 Quantum Inf. Process. 17 133
|
[52] |
Ruppert L, Usenko V C and Filip R 2014 Phys. Rev. A 90 062310
|
[53] |
Furrer F, Franz T, Berta M, Scholz V B, Tomanichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|