Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010305    DOI: 10.1088/1674-1056/28/1/010305
GENERAL Prev   Next  

Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle

Ying Guo(郭迎)1,2, Yu Su(苏玉)2, Jian Zhou(周健)2, Ling Zhang(张玲)2, Duan Huang(黄端)2
1 School of Physics and Information Science, Hunan Normal University, Changsha 410006, China;
2 School of Automation, Central South University, Changsha 410083, China
Abstract  

Continuous-variable quantum key distribution (CVQKD) protocols with entanglement in the middle (EM) enable long maximal transmission distances for quantum communications. For the security analysis of the protocols, it is usually assumed that Eve performs collective Gaussian attacks and there is a lack of finite-size analysis of the protocols. However, in this paper we consider the finite-size regime of the EM-based CVQKD protocols by exposing the protocol to collective attacks and coherent attacks. We differentiate between the collective attacks and the coherent attacks while comparing asymptotic key rate and the key rate in the finite-size scenarios. Moreover, both symmetric and asymmetric configurations are collated in a contrastive analysis. As expected, the derived results in the finite-size scenarios are less useful than those acquired in the asymptotic regime. Nevertheless, we find that CVQKD with entanglement in the middle is capable of providing fully secure secret keys taking the finite-size effects into account with transmission distances of more than 30 km.

Keywords:  continuous-variable quantum key distribution      entanglement in the middle      finite-size      coherent attack  
Received:  26 June 2018      Revised:  26 October 2018      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61572529, 61871407, and 61801522) and the China Postdoctoral Science Foundation (Grant Nos. 2013M542119 and 2014T70772).

Corresponding Authors:  Duan Huang     E-mail:  duanhuang@csu.edu.cn

Cite this article: 

Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端) Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle 2019 Chin. Phys. B 28 010305

[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Zeng G H 2010 Quantum Private Communication (Berlin: Springer-Verlag Press) Chap. 3
[3] Takeda S, Fuwa M, van Loock P and Furusawa A 2015 Phys. Rev. Lett. 114 100501
[4] Gessner M, Pezzé L and Smerzi A 2016 Phys. Rev. A 94 020101
[5] Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 20 4162
[6] Wang S, Chen W, Yin Z Q, He D Y, Hui C, Hao P L, Fan-Yuan G J, Wang C, Zhang L J, Kuang J, Liu S F, Zhou Z, Wang Y G, Guo G C and Han Z F 2018 Opt. Lett. 43 2030
[7] Wang S, Yin Z Q, Chau H F, Chen W, Wang C, Guo G C and Han Z F 2018 Quantum Sci. Technol. 3 025006
[8] Yin Z Q, Wang S, Chen W, Han Y G, Wang R, Guo G C and Han Z F 2018 Nat. Commun. 9 457
[9] Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
[10] Wang C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2017 Optica 4 1016
[11] Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Song X T, Li F Y, Wang D, Chen H, Han Y G, Huang J Z, Guo J F, Hao P L, Li M, Zhang C M, Liu D, Liang W Y, Miao C H, Wu P, Guo G C and Han Z F 2014 Opt. Express 22 21739
[12] Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
[13] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[14] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[15] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[16] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[17] Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D and Zeng G H 2018 Phys. Rev. A 97 052326
[18] Gong L, Song H, He C, Liu Y and Zhou N 2014 Phys. Scr. 89 035101
[19] Song H, Gong L, He C, Liu Y and Zhou N 2012 Acta Phys. Sin. 61 154206 (in Chinese)
[20] Huang P, Fang J and Zeng G H 2014 Phys. Rev. A 89 042330
[21] Ma H X, Bao W S and Li H W 2016 Chin. Phys. B 25 080309
[22] Liu W Q, Peng J Y, Huang P, Huang D and Zeng G H 2017 Opt. Express 25 19429
[23] Huang D, Fang J, Wang C, Huang P and Zeng G H 2013 Chin. Phys. Lett. 30 114209
[24] Huang D, Lin D K, Huang P, Wang C, Liu W Q, Fang S H and Zeng G H 2015 Opt. Express 23 17511
[25] Huang D, Huang P, Wang T, Li H S, Zhou Y M and Zeng G H 2016 Phys. Rev. A 94 032305
[26] Leverrier A, García-Patrón R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
[27] Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
[28] Grosshans F 2005 Phys. Rev. Lett. 94 020504
[29] Navascués M and Acín A 2005 Phys. Rev. Lett. 94 020505
[30] Lodewyck J, Debuisschert T, Tualle-Brouri R and Grangier P 2005 Phys. Rev. A 72 050303(R)
[31] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[32] Navascués M, Grosshans F and Acín A 2006 Phys. Rev. Lett. 97 190502
[33] Pirandola S, Braunstein S L and Lloyd S 2008 Phys. Rev. Lett. 101 200504
[34] Leverrier A and Grangier P 2011 Phys. Rev. Lett. 106 259902(E)
[35] Lin D K, Huang D, Huang P, Peng J Y and Zeng G H 2015 Int. J. Quantum Inf. 13 1550010
[36] Wang X Y, Zhang Y C, Li Z Y, Xu B J, Yu S and Guo H 2018 Quantum Information and Computation 17 1123
[37] Milicevic M, Feng C, Zhang L M and Gulak P G 2017 arXiv:1702.07740v2 [quant-ph]
[38] Weedbrook C 2013 Phys. Rev. A 87 022308
[39] Guo Y, Liao Q, Wang Y J, Huang D, Huang P and Zeng G H 2017 Phys. Rev. A 95 032304
[40] Marshall K and Weedbrook C 2014 Phys. Rev. A 90 042311
[41] Gehring T, Händchen V, Duhme J, Furrer F, Franz T, Pacher C, Werner R F and Schnabel R 2015 Nat. Commun. 6 8795
[42] Leverrier A 2015 Phys. Rev. Lett. 114 070501
[43] Leverrier A 2017 Phys. Rev. Lett. 118 200501
[44] Renner R 2008 International Journal of Quantum Information 06 1
[45] Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
[46] Cai R Y Q and Scarani V 2009 New J. Phys. 11 045024
[47] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
[48] Pironio S, Acín A, Brunner N, Gisin N, Massar S and Scarani V 2009 New J. Phys. 11 045021
[49] Pirandola S, Serafini A and Lloyd S 2009 Phys. Rev. A 79 052327
[50] Pirandola S 2013 New J. Phys. 15 113046
[51] Zhang Z Y, Shi R H, Zeng G H and Guo Y 2018 Quantum Inf. Process. 17 133
[52] Ruppert L, Usenko V C and Filip R 2014 Phys. Rev. A 90 062310
[53] Furrer F, Franz T, Berta M, Scholz V B, Tomanichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
[1] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[2] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[3] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[4] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[5] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[6] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[7] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[8] Spherical reconciliation for a continuous-variable quantum key distribution
Zhao Lu(卢钊), Jian-Hong Shi(史建红), Feng-Guang Li(李风光). Chin. Phys. B, 2017, 26(4): 040304.
[9] Improving continuous-variable quantum key distribution under local oscillator intensity attack using entanglement in the middle
Fang-Li Yang(杨芳丽), Ying Guo(郭迎), Jin-Jing Shi(石金晶), Huan-Li Wang(王焕礼), Jin-Jin Pan(潘矜矜). Chin. Phys. B, 2017, 26(10): 100303.
[10] Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals
Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳). Chin. Phys. B, 2014, 23(5): 056102.
[11] Quantum Monte Carlo study on the phase transition for a generalized two-dimensional staggered dimerized Heisenberg model
Zheng Rui (郑睿), Liu Bang-Gui (刘邦贵 ). Chin. Phys. B, 2012, 21(11): 116401.
[12] Numerical study of anomalous dynamic scaling behaviour of (1+1)-dimensional Das Sarma—Tamborenea model
Xun Zhi-Peng(寻之朋), Tang Gang(唐刚), Han Kui(韩奎), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Zhou Wei(周伟), Yang Xi-Quan(杨细全), Wen Rong-Ji(温荣吉), and Chen Yu-Ling(陈玉岭). Chin. Phys. B, 2010, 19(7): 070516.
[13] Thermodynamic properties of a finite Bose gas in a harmonic trap
Wang Jian-Hui(王建辉) and Ma Yong-Li(马永利). Chin. Phys. B, 2010, 19(5): 050502.
[14] Finite-size effects in a D-dimensional ideal Fermi gas
Su Guo-Zhen(苏国珍), Ou Cong-Jie(欧聪杰), Wang A Qiu-Ping, and Chen Jin-Can(陈金灿). Chin. Phys. B, 2009, 18(12): 5189-5195.
[15] Non-geometrical effects on Gaussian beams transmitting through a thin dielectric slab
Li Chun-Fang(李春芳), Zhang Yan(张妍), Chen Xi(陈玺), and Zhu Qi-Biao(朱绮彪) . Chin. Phys. B, 2008, 17(5): 1758-1768.
No Suggested Reading articles found!