Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010307    DOI: 10.1088/1674-1056/28/1/010307
GENERAL Prev   Next  

Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects

Kun-Qiang Zhu(朱坤强), Zi-Fa Yu(鱼自发), Ji-Ming Gao(高吉明), Ai-Xia Zhang(张爱霞), Hong-Ping Xu(徐红萍), Ju-Kui Xue(薛具奎)
College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  

We theoretically investigate the periodically modulated interaction effect on the propagation properties of a traveling plane wave in a Bose-Einstein condensate (BEC) trapped in a deep annular lattice with local defects both analytically and numerically. By using the two-mode ansatz and the tight-binding approximation, a critical condition for the system preserving the superfluidity is obtained analytically and confirmed numerically. We find that the coupled effects of periodic modulated atomic interactions, the quasi-momentum of the plane wave, and the defect can control the superfluidity of the system. Particularly, when we consider the periodic modulation in the system with single defect, the critical condition for the system entering the superfluid regime depends on both the defect and the momentum of the plane wave. This is different from the case for the system without the periodic modulation, where the critical condition is only determined by the defect. The modulation and quasi-momentum of the plane wave can enhance the system entering the superfluid regime. Interestingly, when the modulated amplitude/frequency, the defect strength, and the quasi-momentum of the plane wave satisfy a certain condition, the system will always be in the superfluid region. This engineering provides a possible means for studying the periodic modulation effect on propagation properties and the corresponding dynamics of BECs in disordered optical lattices.

Keywords:  Bose-Einstein condensate      periodic modulation      superfluidity      lattice with defects  
Received:  28 August 2018      Revised:  29 October 2018      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11764039, 11475027, 11865014, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).

Corresponding Authors:  Ju-Kui Xue     E-mail:  xuejk@nwnu.edu.cn

Cite this article: 

Kun-Qiang Zhu(朱坤强), Zi-Fa Yu(鱼自发), Ji-Ming Gao(高吉明), Ai-Xia Zhang(张爱霞), Hong-Ping Xu(徐红萍), Ju-Kui Xue(薛具奎) Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects 2019 Chin. Phys. B 28 010307

[1] Diver M, Robb G R M and Oppo G L 2015 Phys. Rev. A 91 033622
[2] Shadkhoo S and Bruinsma R 2015 Phys. Rev. Lett. 115 135305
[3] Kengne E, Lakhssassi A, Liu W M and Vaillancourt R 2013 Phys. Rev. E 87 022914
[4] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[5] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[6] Jiang J, Zhao L, Wang S T, Chen Z, Tang T, Duan L M and Liu Y 2016 Phys. Rev. A 93 063607
[7] Li L, Li Z, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
[8] Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
[9] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
[10] Yamazaki R, Taie S, Sugawa S and Takahashi Y 2010 Phys. Rev. Lett. 105 050405
[11] Pollack S E, Dries D, Hulet R G, Magalhães K M F, Henn E A L, Ramos E R F, Caracanhas M A and Bagnato V S 2010 Phys. Rev. A 81 053627
[12] Theis M, Thalhammer G, Winkler K, Hellwig M, Ruff G, Grimm R and Denschlag J H 2004 Phys. Rev. Lett. 93 123001
[13] Kevrekidis P G, Theocharis G, Frantzeskakis D J and Malomed B A 2003 Phys. Rev. Lett. 90 230401
[14] Abdullaev F K, Tsoy E N, Malomed B A and Kraenkel R A 2003 Phys. Rev. A 68 053606
[15] Parny L F, Rousseau V G and Roscilde T 2015 Phys. Rev. Lett. 114 195302
[16] Sabari S, Jisha C P, Porsezian K and Brazhnyi V A 2015 Phys. Rev. E 92 032905
[17] Zhang S L, Zhou Z W and Wu B 2013 Phys. Rev. A 87 013633
[18] Ding C Y, Zhang X F, Zhao D, Luo H G and Liu W M 2011 Phys. Rev. A 84 053631
[19] Gong J B, Morales-Molina L and Hänggi P 2009 Phys. Rev. Lett. 103 133002
[20] Rapp Á, Deng X L and Santos L 2012 Phys. Rev. Lett. 109 203005
[21] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243
[22] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[23] Hu Y, Liang Z X and Hu B B 2010 Phys. Rev. A 81 053621
[24] Yang S J and Nie S 2010 Phys. Rev. A 82 061607
[25] Wang B, Fu P, Liu J and Wu B 2006 Phys. Rev. A 74 063610
[26] Jian Y, Zhang A X, He C X, Qi X Y and Xue J K 2013 Phys. Rev. E 87 053201
[27] Larson J, Martikainen J P, Collin A and Sjöqvist E 2010 Phys. Rev. A 82 043620
[28] Yu Z F and Xue J K 2014 Phys. Rev. A 90 033618
[29] Liu S P, Li J H, Yu R and Wu Y 2013 Phys. Rev. A 87 062316
[30] Trombettoni A, Smerzi A and Bishop A R 2003 Phys. Rev. E 67 016607
[31] Trombettoni A, Smerzi A and Bishop A R 2002 Phys. Rev. Lett. 88 173902
[32] Deissler B, Zaccanti M, Roati G, D'Errico C, Fattori M, Modugno M, Modugno G and Inguscio M 2010 Nat. Phys. 6 354
[33] Bai X D and Xue J K 2012 Phys. Rev. E 86 066605
[34] Brazhnyi V A and Malomed B A 2011 Phys. Rev. E 83 016604
[35] Zhang Y, Xu Y and Busch T 2015 Phys. Rev. A 91 043629
[36] Zhang Y, Mossman M E, Busch T, Engels P and Zhang C 2016 Front. Phys. 11 118103
[37] Yulin A V, Bludov Y V, Konotop V V, Kuzmiak V and Salerno M 2011 Phys. Rev. A 84 063638
[38] Skokos C and Flach S 2010 Phys. Rev. E 82 016208
[39] Stark C, Pollet L, Imamoğlu A and Renner R 2011 Phys. Rev. Lett. 107 030504
[40] Wang D S, Shi Y R, Feng W X and Wen L 2017 Physica D 351-352 30
[41] Li Q, Wang D S, Wen X Y and Zhuang J H 2018 Nonlinear Dyn. 91 625
[42] Wang G F, Fu L B and Liu J 2006 Phys. Rev. A 73 013619
[43] Kayanuma Y and Mizumoto Y 2000 Phys. Rev. A 62 061401(R)
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[6] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[7] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[8] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[9] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[10] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[11] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[12] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[13] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[14] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[15] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
No Suggested Reading articles found!