Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097803    DOI: 10.1088/1674-1056/27/9/097803
Special Issue: TOPICAL REVIEW — Nanophotonics
TOPICAL REVIEW—Nanophotonics Prev   Next  

Recent progress on photoluminescence from plasmonic nanostructures: Phenomenon, mechanism, and application

Tingting Yin(尹婷婷)2,3, Liyong Jiang(蒋立勇)1,2, Zexiang Shen(申泽骧)2,3
1 Department of Physics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Center for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371;
3 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences(SPMS), Nanyang Technological University, Singapore 637371
Abstract  

Photoluminescence (PL) from bulk noble metals arises from the interband transition of bound electrons. Plasmonic nanostructures can greatly enhance the quantum yield of noble metals through the localized surface plasmon. In this work, we briefly review recent progress on the phenomenon, mechanism, and application of one-photon PL from plasmonic nanostructures. Particularly, our recent efforts in the study of the PL peak position, partial depolarization, and mode selection from plasmonic nanostructures can bring about a relatively complete and deep understanding of the physical mechanism of one-photon PL from plasmonic nanostructures, paving the way for future applications in plasmonic imaging, plasmonic nanolasing, and surface enhanced fluorescence spectra.

Keywords:  photoluminescence      plasmonic nanostructures      localized surface plasmon  
Received:  05 March 2018      Revised:  23 April 2018      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.55.-m (Photoluminescence, properties and materials)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61675096 and 61205042), the Natural Science Foundation of Jiangsu Province in China (Grant No. BK20141393), and the Singapore Ministry of Education Academic Research Fund Tier 3 (Grant No. MOE2011-T3-1-005) and Tier 2 (Grant No. MOE2012-T2-2-124).

Corresponding Authors:  Liyong Jiang, Zexiang Shen     E-mail:  jly@njust.edu.cn;zexiang@ntu.edu.sg

Cite this article: 

Tingting Yin(尹婷婷), Liyong Jiang(蒋立勇), Zexiang Shen(申泽骧) Recent progress on photoluminescence from plasmonic nanostructures: Phenomenon, mechanism, and application 2018 Chin. Phys. B 27 097803

[1] Mooradian A 1969 Phys. Rev. Lett. 22 185
[2] Boyd G T, Yu Z H and Shen Y R 1986 Phys. Rev. B 33 7923
[3] Link S and El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409
[4] Mohamed M B, Volkov V, Link S and El-Sayed M A 2000 Chem. Phys. Lett. 317 517
[5] Huang T and Murray R W 2003 J. Phys. Chem. B 107 7434
[6] Beversluis M R, Bouhelier A and Novotny L 2003 Phys. Rev. B 68 115433
[7] Dulkeith E, Niedereichholz T, Klar T A, Feldmann J, Von Plessen G, Gittins D I, Mayya K S and Caruso F 2004 Phys. Rev. B 70 205424
[8] Wu X, Ming T, Wang X, Wang P N, Wang J F and Chen J Y 2010 ACS Nano 4 113
[9] Varnavski O P, Goodson T, Mohamed M B and El-Sayed M A 2005 Phys. Rev. B 72 235405
[10] Haug T, Klemm P, Bange S and Lupton J M 2015 Phys. Rev. Lett. 115 067403
[11] Lin K Q, Yi J, Hu S, Sun J J, Zheng J T, Wang X and Ren B 2016 ACS Photon. 3 1248
[12] Hugall J T and Baumberg J J 2015 Nano Lett. 15 2600
[13] Mertens J, Kleemann M E, Chikkaraddy R, Narang P and Baumberg J J 2017 Nano Lett. 17 2568
[14] Hu H L, Duan H G, Yang J K W and Shen Z X 2012 ACS Nano 6 10147
[15] Yin T T, Dong Z G, Jiang L Y, Zhang L, Hu H, Qiu C W, Yang J K W and Shen Z X 2016 ACS Photon. 3 979
[16] Murray W A and Barnes W L 2007 Adv. Mater. 19 3771
[17] Amendola V, Pilot R, Frasconi M, Marago O M and Iati M A 2017 J. Phys.:Condens. Matter 29 203002
[18] Maier S A 2007 Plasmonics:Fundamentals and Applications (New York:Springer) p. XXVI
[19] Wang F and Shen Y R 2006 Phys. Rev. Lett. 97 206806
[20] Duan H G, Hu H L, Hui H K, Shen Z X and Yang J K W 2013 Nanotechonology 24 185301
[21] Duan H G, Fernández-Domínguez A I, Bosman M, Maier S A and Yang J K W 2012 Nano Lett. 12 1683
[22] Liang Z Q, Sun J, Jiang Y Y, Jiang L and Chen X D 2014 Plasmonics 9 859
[23] Jiang L Y, Yin T T, Dong Z G, Liao M Y, Tan S J, Goh X M, Allioux D, Hu H L, Li X Y, Yang J K W and Shen Z 2015 ACS Nano 9 10039
[24] Jain P K and El-Sayed M A 2010 Chem. Phys. Lett. 487 153
[25] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[26] Kumar K, Duan H G, Hegde R S, Koh S C W, Wei J N and Yang J K W 2012 Nat. Nanotechnol. 7 557
[27] Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J and Mortensen N A 2017 Nat. Rev. Mater. 2 16088
[28] Brongersma M L, Halas N J and Nordlander P 2015 Nat. Nanotechnol. 10 25
[29] Klar T, Perner M, Grosse S, Von Plessen G, Spirkl W and Feldmann J 1998 Phys. Rev. Lett. 80 4249
[30] Watanabe K, Menzel D, Nilius N and Freund H J 2006 Chem. Rev. 106 4301
[31] Cheng Y Q, Lu G W, He Y B, Shen H M, Zhao J Y, Xia K Y and Gong Q H 2016 Nanoscale 8 2188
[32] Wan A, Wang T, Yin T T, Lo A R, Hu H L, Li S Z, Shen Z X and Nijhuis C A 2015 ACS Photon. 2 1348
[33] Lumdee C, Yun B F and Kik P G 2014 ACS Photon. 1 1224
[34] Shahbazyan T V 2013 Nano Lett. 13 194
[35] Fang Y, Chang W S, Willingham B, Swanglap P, Dominguez-Medina S and Link S 2012 ACS Nano 6 7177
[36] Huang D, Byers C P, Wang L Y, Hoggard A L, Hoenee B, Dominguez-Medina S, Chen S S, Chang W S, Landes C F and Link S 2015 ACS Nano 9 7072
[37] Lin K Q, Yi J, Zhong J H, Hu S, Liu B J, Liu J Y, Zong C, Lei Z C, Wang X, Aizpurua J, Esteban R and Ren B 2017 Nat. Commun. 8 14891
[38] Voisin C, Christofilos D, Loukakos P A, Del F N, Vallee F, Lerme J, Gaudry M, Cottancin E, Pellarin M and Broyer M 2004 Phys. Rev. B 69 195416
[39] Bauer M, Marienfeld A and Aeschlimann M 2015 Progr. Surf. Sci. 90 319
[40] Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S, Hafner J H, Nordlander P and Halas N J 2008 Nano Lett. 8 1212
[41] Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P and Wiederrecht G P 2005 Phys. Rev. Lett. 95 267405
[42] Knittel V, Fischer M P, De Roo T, Mecking S, Leitenstorfer A and Brida D 2015 ACS Nano 9 894
[43] Chen W L, Lin F C, Lee Y Y, Li F C, Chang Y M and Huang J S 2014 ACS Nano 8 9053
[44] Andersen S K H, Pors A and Bozhevolnyi S I 2015 ACS Photon. 2 432
[45] Tcherniak A, Dominguez-Medina S, Chang W S, Swanglap P, Slaughter L S, Landes C F and Link S 2011 J. Phys. Chem. C 115 15938
[46] Zhang T Y, Lu G W, Shen H M, Shi K B, Jiang Y Y, Xu D S and Gong Q H 2015 Sci. Rep. 4 3867
[47] Yin T T, Jiang L Y, Dong Z G, Yang J K W and Shen Z X 2017 Nanoscale 9 2082
[48] Jiang L Y, Yin T T, Dong Z G, Hu H L, Liao M Y, Allioux D, Tan S J, Goh X M, Li X Y, Yang J K W and Shen Z X 2015 ACS Photon. 2 1217
[49] Li G C, Zhang Y L, Jiang J, Luo Y and Lei D Y 2017 ACS Nano 11 3067
[50] Yang A K, Hoang T B, Dridi M, Deeb C, Mikkelsen M H, Schatz G C and Odom T W 2015 Nat. Commun. 6 6939
[51] Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L, Li L J, Zhao W J, Eda G, Zhang W J, Grinblat G, Maier S A, Yang J K W, Qiu C W and Wee A T S 2016 Nat. Commun. 7 11283
[52] Shang L, Dorlich R M, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D and Nienhaus G U 2011 Nanoscale 3 2009
[53] Yang X, Yang M X, Pang B, Vara M and Xia Y N 2015 Chem. Rev. 115 10410
[54] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[55] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[56] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[57] Flynn R A, Kim C S, Vurgaftman I, Kim M, Meyer J R, Mäkinen A J, Bussmann K, Cheng L, Choa F S and Long J P 2011 Opt. Express 19 8954
[58] Meng X G, Kildishev A V, Fujita K, Tanaka K and Shalaev V M 2013 Nano Lett. 13 4106
[59] Shi C, Soltani S and Armani A M 2013 Nano Lett. 13 5827
[60] Khurgin J B and Sun G 2014 Nat. Photon. 8 468
[61] Lu Y J, Wang C Y, Kim J S, Chen H Y, Lu M Y, Chen Y C, Chang W H, Chen L J, Stockman M I, Shih C K and Gwo S 2014 Nano Lett. 14 4381
[62] Yang A K, Li Z Y, Knudson M P, Hryn A J, Wang W J, Aydin K and Odom T W 2015 ACS Nano 9 11582
[63] Galanzha E I, Weingold R, Nedosekin D A, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov A S, Parkhomenko R G, Watanabe F, Nima Z, Biris A S, Plekhanov A I, Stockman M I and Zharov V P 2017 Nat. Commun. 8 15528
[64] Tanaka K, Plum E, Ou J Y, Uchino T and Zheludev N I 2010 Phys. Rev. Lett. 105 227403
[65] Ayala-Orozco C, Liu J G, Knight M W, Wang Y, Day J K, Nordlander P and Halas N J 2014 Nano Lett. 14 2926
[66] Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J and Lou J 2014 ACS Nano 8 12682
[67] Yu S J, Kim Y H, Lee S Y, Song H D and Yi J 2014 Angew. Chem. Int. Ed. 53 11203
[68] Zheng Z K, Tachikawa T and Majima T 2015 J. Am. Chem. Soc. 137 948
[69] Chen H T, Yang J, Rusak E, Straubel J, Guo R, Myint Y W, Pei J J, Decker M, Staude I, Rockstuhl C, Lu Y R, Kivshar Y S and Neshev D 2016 Sci. Rep. 6 22296
[70] Lee G Y, Jung K, Jang H S, Kyhm J, Han I K, Park B, Ju H, Kwon S J and Ko H 2016 Nanoscale 8 2071
[71] Johnson A D, Cheng F, Tsai Y and Shih C K 2017 Nano Lett. 17 4317
[72] Yan J H, Ma C R, Liu P and Yang G W 2017 ACS Photon. 4 1092
[73] Signoretto M, Zink-Lorre N, Martínez-Pastor J P, Font-Sanchis E, Chirvony V S, Sastre-Santos Á, Fernández-Lázaro F and Suárez I 2017 Appl. Phys. Lett. 111 081102
[74] He Y B, Xia K Y, Lu G W, Shen H M, Cheng Y Q, Liu Y C, Shi K B, Xiao Y F and Gong Q H 2015 Nanoscale 7 577
[75] Guan Z P, Gao N Y, Jiang X F, Yuan P Y, Han F and Xu Q H 2013 J. Am. Chem. Soc. 135 7272
[76] Verellen N, Denkova D, Clercq B D, Silhanek A V, Ameloot M, Dorpe P V and Moshchalkov V V 2015 ACS Photon. 2 410
[77] Molinaro C, El Harfouch Y, Palleau E, Eloi F, Marguet S, Douillard L, Charra F and Fiorini-Debuisschert C 2016 J. Phys. Chem. C 120 23136
[78] Masuo S, Kanetaka K, Sato R and Teranishi T 2016 ACS Photon. 3 109
[79] Knittel V, Fischer M P, Vennekel M, Rybka T, Leitenstorfer A and Brida D 2017 Phys. Rev. B 96 125428
[80] Lien M B, Kim J Y, Han M G, Chang Y C, Chang Y C, Ferguson H J, Zhu Y, Herzing A A, Schotl, J C, Kotov N A and Norris T B 2017 ACS Nano 11 5925
[81] Huang J, Wang W, Murphy C J and Cahill D G 2014 Proc. Natl Acad. Sci. USA 111 906
[82] Shangjr G and Chih-Kang S 2016 Rep. Prog. Phys. 79 086501
[83] Dong J, Zhang Z L, Zheng H R and Sun M T 2017 Nanophotonics 6 502
[84] Wang X L, Morea R, Gonzalo J and Palpant B 2015 Nano Lett. 15 2633
[85] Cui S Y, Zhang X Y, Liu T L, Lee J, Bracher D, Ohno K, Awschalom D and Hu E L 2015 ACS Photon. 2 465
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[10] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[11] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[12] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[13] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[14] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[15] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
No Suggested Reading articles found!