Special Issue:
TOPICAL REVIEW — Nanophotonics
|
|
|
Recent progress on photoluminescence from plasmonic nanostructures: Phenomenon, mechanism, and application |
Tingting Yin(尹婷婷)2,3, Liyong Jiang(蒋立勇)1,2, Zexiang Shen(申泽骧)2,3 |
1 Department of Physics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Center for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371;
3 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences(SPMS), Nanyang Technological University, Singapore 637371 |
|
|
Abstract Photoluminescence (PL) from bulk noble metals arises from the interband transition of bound electrons. Plasmonic nanostructures can greatly enhance the quantum yield of noble metals through the localized surface plasmon. In this work, we briefly review recent progress on the phenomenon, mechanism, and application of one-photon PL from plasmonic nanostructures. Particularly, our recent efforts in the study of the PL peak position, partial depolarization, and mode selection from plasmonic nanostructures can bring about a relatively complete and deep understanding of the physical mechanism of one-photon PL from plasmonic nanostructures, paving the way for future applications in plasmonic imaging, plasmonic nanolasing, and surface enhanced fluorescence spectra.
|
Received: 05 March 2018
Revised: 23 April 2018
Accepted manuscript online:
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675096 and 61205042), the Natural Science Foundation of Jiangsu Province in China (Grant No. BK20141393), and the Singapore Ministry of Education Academic Research Fund Tier 3 (Grant No. MOE2011-T3-1-005) and Tier 2 (Grant No. MOE2012-T2-2-124). |
Corresponding Authors:
Liyong Jiang, Zexiang Shen
E-mail: jly@njust.edu.cn;zexiang@ntu.edu.sg
|
Cite this article:
Tingting Yin(尹婷婷), Liyong Jiang(蒋立勇), Zexiang Shen(申泽骧) Recent progress on photoluminescence from plasmonic nanostructures: Phenomenon, mechanism, and application 2018 Chin. Phys. B 27 097803
|
[1] |
Mooradian A 1969 Phys. Rev. Lett. 22 185
|
[2] |
Boyd G T, Yu Z H and Shen Y R 1986 Phys. Rev. B 33 7923
|
[3] |
Link S and El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409
|
[4] |
Mohamed M B, Volkov V, Link S and El-Sayed M A 2000 Chem. Phys. Lett. 317 517
|
[5] |
Huang T and Murray R W 2003 J. Phys. Chem. B 107 7434
|
[6] |
Beversluis M R, Bouhelier A and Novotny L 2003 Phys. Rev. B 68 115433
|
[7] |
Dulkeith E, Niedereichholz T, Klar T A, Feldmann J, Von Plessen G, Gittins D I, Mayya K S and Caruso F 2004 Phys. Rev. B 70 205424
|
[8] |
Wu X, Ming T, Wang X, Wang P N, Wang J F and Chen J Y 2010 ACS Nano 4 113
|
[9] |
Varnavski O P, Goodson T, Mohamed M B and El-Sayed M A 2005 Phys. Rev. B 72 235405
|
[10] |
Haug T, Klemm P, Bange S and Lupton J M 2015 Phys. Rev. Lett. 115 067403
|
[11] |
Lin K Q, Yi J, Hu S, Sun J J, Zheng J T, Wang X and Ren B 2016 ACS Photon. 3 1248
|
[12] |
Hugall J T and Baumberg J J 2015 Nano Lett. 15 2600
|
[13] |
Mertens J, Kleemann M E, Chikkaraddy R, Narang P and Baumberg J J 2017 Nano Lett. 17 2568
|
[14] |
Hu H L, Duan H G, Yang J K W and Shen Z X 2012 ACS Nano 6 10147
|
[15] |
Yin T T, Dong Z G, Jiang L Y, Zhang L, Hu H, Qiu C W, Yang J K W and Shen Z X 2016 ACS Photon. 3 979
|
[16] |
Murray W A and Barnes W L 2007 Adv. Mater. 19 3771
|
[17] |
Amendola V, Pilot R, Frasconi M, Marago O M and Iati M A 2017 J. Phys.:Condens. Matter 29 203002
|
[18] |
Maier S A 2007 Plasmonics:Fundamentals and Applications (New York:Springer) p. XXVI
|
[19] |
Wang F and Shen Y R 2006 Phys. Rev. Lett. 97 206806
|
[20] |
Duan H G, Hu H L, Hui H K, Shen Z X and Yang J K W 2013 Nanotechonology 24 185301
|
[21] |
Duan H G, Fernández-Domínguez A I, Bosman M, Maier S A and Yang J K W 2012 Nano Lett. 12 1683
|
[22] |
Liang Z Q, Sun J, Jiang Y Y, Jiang L and Chen X D 2014 Plasmonics 9 859
|
[23] |
Jiang L Y, Yin T T, Dong Z G, Liao M Y, Tan S J, Goh X M, Allioux D, Hu H L, Li X Y, Yang J K W and Shen Z 2015 ACS Nano 9 10039
|
[24] |
Jain P K and El-Sayed M A 2010 Chem. Phys. Lett. 487 153
|
[25] |
Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
|
[26] |
Kumar K, Duan H G, Hegde R S, Koh S C W, Wei J N and Yang J K W 2012 Nat. Nanotechnol. 7 557
|
[27] |
Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J and Mortensen N A 2017 Nat. Rev. Mater. 2 16088
|
[28] |
Brongersma M L, Halas N J and Nordlander P 2015 Nat. Nanotechnol. 10 25
|
[29] |
Klar T, Perner M, Grosse S, Von Plessen G, Spirkl W and Feldmann J 1998 Phys. Rev. Lett. 80 4249
|
[30] |
Watanabe K, Menzel D, Nilius N and Freund H J 2006 Chem. Rev. 106 4301
|
[31] |
Cheng Y Q, Lu G W, He Y B, Shen H M, Zhao J Y, Xia K Y and Gong Q H 2016 Nanoscale 8 2188
|
[32] |
Wan A, Wang T, Yin T T, Lo A R, Hu H L, Li S Z, Shen Z X and Nijhuis C A 2015 ACS Photon. 2 1348
|
[33] |
Lumdee C, Yun B F and Kik P G 2014 ACS Photon. 1 1224
|
[34] |
Shahbazyan T V 2013 Nano Lett. 13 194
|
[35] |
Fang Y, Chang W S, Willingham B, Swanglap P, Dominguez-Medina S and Link S 2012 ACS Nano 6 7177
|
[36] |
Huang D, Byers C P, Wang L Y, Hoggard A L, Hoenee B, Dominguez-Medina S, Chen S S, Chang W S, Landes C F and Link S 2015 ACS Nano 9 7072
|
[37] |
Lin K Q, Yi J, Zhong J H, Hu S, Liu B J, Liu J Y, Zong C, Lei Z C, Wang X, Aizpurua J, Esteban R and Ren B 2017 Nat. Commun. 8 14891
|
[38] |
Voisin C, Christofilos D, Loukakos P A, Del F N, Vallee F, Lerme J, Gaudry M, Cottancin E, Pellarin M and Broyer M 2004 Phys. Rev. B 69 195416
|
[39] |
Bauer M, Marienfeld A and Aeschlimann M 2015 Progr. Surf. Sci. 90 319
|
[40] |
Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S, Hafner J H, Nordlander P and Halas N J 2008 Nano Lett. 8 1212
|
[41] |
Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P and Wiederrecht G P 2005 Phys. Rev. Lett. 95 267405
|
[42] |
Knittel V, Fischer M P, De Roo T, Mecking S, Leitenstorfer A and Brida D 2015 ACS Nano 9 894
|
[43] |
Chen W L, Lin F C, Lee Y Y, Li F C, Chang Y M and Huang J S 2014 ACS Nano 8 9053
|
[44] |
Andersen S K H, Pors A and Bozhevolnyi S I 2015 ACS Photon. 2 432
|
[45] |
Tcherniak A, Dominguez-Medina S, Chang W S, Swanglap P, Slaughter L S, Landes C F and Link S 2011 J. Phys. Chem. C 115 15938
|
[46] |
Zhang T Y, Lu G W, Shen H M, Shi K B, Jiang Y Y, Xu D S and Gong Q H 2015 Sci. Rep. 4 3867
|
[47] |
Yin T T, Jiang L Y, Dong Z G, Yang J K W and Shen Z X 2017 Nanoscale 9 2082
|
[48] |
Jiang L Y, Yin T T, Dong Z G, Hu H L, Liao M Y, Allioux D, Tan S J, Goh X M, Li X Y, Yang J K W and Shen Z X 2015 ACS Photon. 2 1217
|
[49] |
Li G C, Zhang Y L, Jiang J, Luo Y and Lei D Y 2017 ACS Nano 11 3067
|
[50] |
Yang A K, Hoang T B, Dridi M, Deeb C, Mikkelsen M H, Schatz G C and Odom T W 2015 Nat. Commun. 6 6939
|
[51] |
Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L, Li L J, Zhao W J, Eda G, Zhang W J, Grinblat G, Maier S A, Yang J K W, Qiu C W and Wee A T S 2016 Nat. Commun. 7 11283
|
[52] |
Shang L, Dorlich R M, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D and Nienhaus G U 2011 Nanoscale 3 2009
|
[53] |
Yang X, Yang M X, Pang B, Vara M and Xia Y N 2015 Chem. Rev. 115 10410
|
[54] |
Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
|
[55] |
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
|
[56] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
|
[57] |
Flynn R A, Kim C S, Vurgaftman I, Kim M, Meyer J R, Mäkinen A J, Bussmann K, Cheng L, Choa F S and Long J P 2011 Opt. Express 19 8954
|
[58] |
Meng X G, Kildishev A V, Fujita K, Tanaka K and Shalaev V M 2013 Nano Lett. 13 4106
|
[59] |
Shi C, Soltani S and Armani A M 2013 Nano Lett. 13 5827
|
[60] |
Khurgin J B and Sun G 2014 Nat. Photon. 8 468
|
[61] |
Lu Y J, Wang C Y, Kim J S, Chen H Y, Lu M Y, Chen Y C, Chang W H, Chen L J, Stockman M I, Shih C K and Gwo S 2014 Nano Lett. 14 4381
|
[62] |
Yang A K, Li Z Y, Knudson M P, Hryn A J, Wang W J, Aydin K and Odom T W 2015 ACS Nano 9 11582
|
[63] |
Galanzha E I, Weingold R, Nedosekin D A, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov A S, Parkhomenko R G, Watanabe F, Nima Z, Biris A S, Plekhanov A I, Stockman M I and Zharov V P 2017 Nat. Commun. 8 15528
|
[64] |
Tanaka K, Plum E, Ou J Y, Uchino T and Zheludev N I 2010 Phys. Rev. Lett. 105 227403
|
[65] |
Ayala-Orozco C, Liu J G, Knight M W, Wang Y, Day J K, Nordlander P and Halas N J 2014 Nano Lett. 14 2926
|
[66] |
Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J and Lou J 2014 ACS Nano 8 12682
|
[67] |
Yu S J, Kim Y H, Lee S Y, Song H D and Yi J 2014 Angew. Chem. Int. Ed. 53 11203
|
[68] |
Zheng Z K, Tachikawa T and Majima T 2015 J. Am. Chem. Soc. 137 948
|
[69] |
Chen H T, Yang J, Rusak E, Straubel J, Guo R, Myint Y W, Pei J J, Decker M, Staude I, Rockstuhl C, Lu Y R, Kivshar Y S and Neshev D 2016 Sci. Rep. 6 22296
|
[70] |
Lee G Y, Jung K, Jang H S, Kyhm J, Han I K, Park B, Ju H, Kwon S J and Ko H 2016 Nanoscale 8 2071
|
[71] |
Johnson A D, Cheng F, Tsai Y and Shih C K 2017 Nano Lett. 17 4317
|
[72] |
Yan J H, Ma C R, Liu P and Yang G W 2017 ACS Photon. 4 1092
|
[73] |
Signoretto M, Zink-Lorre N, Martínez-Pastor J P, Font-Sanchis E, Chirvony V S, Sastre-Santos Á, Fernández-Lázaro F and Suárez I 2017 Appl. Phys. Lett. 111 081102
|
[74] |
He Y B, Xia K Y, Lu G W, Shen H M, Cheng Y Q, Liu Y C, Shi K B, Xiao Y F and Gong Q H 2015 Nanoscale 7 577
|
[75] |
Guan Z P, Gao N Y, Jiang X F, Yuan P Y, Han F and Xu Q H 2013 J. Am. Chem. Soc. 135 7272
|
[76] |
Verellen N, Denkova D, Clercq B D, Silhanek A V, Ameloot M, Dorpe P V and Moshchalkov V V 2015 ACS Photon. 2 410
|
[77] |
Molinaro C, El Harfouch Y, Palleau E, Eloi F, Marguet S, Douillard L, Charra F and Fiorini-Debuisschert C 2016 J. Phys. Chem. C 120 23136
|
[78] |
Masuo S, Kanetaka K, Sato R and Teranishi T 2016 ACS Photon. 3 109
|
[79] |
Knittel V, Fischer M P, Vennekel M, Rybka T, Leitenstorfer A and Brida D 2017 Phys. Rev. B 96 125428
|
[80] |
Lien M B, Kim J Y, Han M G, Chang Y C, Chang Y C, Ferguson H J, Zhu Y, Herzing A A, Schotl, J C, Kotov N A and Norris T B 2017 ACS Nano 11 5925
|
[81] |
Huang J, Wang W, Murphy C J and Cahill D G 2014 Proc. Natl Acad. Sci. USA 111 906
|
[82] |
Shangjr G and Chih-Kang S 2016 Rep. Prog. Phys. 79 086501
|
[83] |
Dong J, Zhang Z L, Zheng H R and Sun M T 2017 Nanophotonics 6 502
|
[84] |
Wang X L, Morea R, Gonzalo J and Palpant B 2015 Nano Lett. 15 2633
|
[85] |
Cui S Y, Zhang X Y, Liu T L, Lee J, Bracher D, Ohno K, Awschalom D and Hu E L 2015 ACS Photon. 2 465
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|