Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 098101    DOI: 10.1088/1674-1056/27/9/098101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dynamically tunable terahertz passband filter based on metamaterials integrated with a graphene middle layer

MaoSheng Yang(杨茂生)1,2,4, LanJu Liang(梁兰菊)1,2,3,4, DeQuan Wei(韦德泉)1,4, Zhang Zhang(张璋)1,2,3,4, Xin Yan(闫昕)1,2,3,4, Meng Wang(王猛)1,4, JianQuan Yao(姚建铨)1,3,4
1 School of Opto-electronics Engineering, Zaozhuang University, Zaozhuang 277160, China;
2 College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China;
3 Key Laboratory of Optoelectronic Information Science and Technology(Ministry of Education), Tianjin University, Tianjin 300072, China;
4 Key Laboratory of Optoelectronic Information Processing and Display in Universities of Shandong, Zaozhuang University, Zaozhuang 277160, China
Abstract  

The dynamic tunability of a terahertz (THz) passband filter was realized by changing the Fermi energy (EF) of graphene based on the sandwiched structure of metal-graphene-metal metamaterials (MGMs). By using plane wave simulation, we demonstrated that the central frequency (f0) of the proposed filter can shift from 5.04 THz to 5.71 THz; this shift is accompanied by a 3 dB bandwidth (Δf) decrease from 1.82 THz to 0.01 THz as the EF increases from 0 to 0.75 eV. Additionally, in order to select a suitable control equation for the proposed filter, the curves of Δf and f0 under different graphene EF were fitted using five different mathematical models. The fitting results demonstrate that the DoseResp model offers accurate predictions of the change in the 3 dB bandwidth, and the Quartic model can successfully describe the variation in the center frequency of the proposed filter. Moreover, the electric field and current density analyses show that the dynamic tuning property of the proposed filter is mainly caused by the competition of two coupling effects at different graphene EF, i.e., graphene-polyimide coupling and graphene-metal coupling. This study shows that the proposed structures are promising for realizing dynamically tunable filters in innovative THz communication systems.

Keywords:  metamaterial      terahertz      filter      mathematical model      tunability      graphene  
Received:  02 February 2018      Revised:  24 June 2018      Accepted manuscript online: 
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Fx (Diffraction and scattering)  
  84.30.Vn (Filters)  
  43.58.Kr (Spectrum and frequency analyzers and filters; acoustical and electrical oscillographs; photoacoustic spectrometers; acoustical delay lines and resonators)  
Fund: 
Project supported by the National Natural Science Foundation of China (Grant Nos. 61701434, 61735010, and 61675147), the Open Fund of the Key Laboratory of Optoelectronic Information Technology, Ministry of Education (Tianjin University), China, the Key Laboratory of Optoelectronic Information Functional Materials and Micro-Nano devices in Zaozhuang, China, the China Postdoctoral Science Foundation (Grant No. 2015M571263), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2017MF005 and ZR2018LF001), Project of Shandong Province Higher Education Science and Technology Program, China (Grant No. J17KA087), the Program of Independent and Achievement Transformation Plan for Zaozhuang, China (Grant Nos. 2016GH19 and 2016GH31), and Zaozhuang Engineering Research Center of Terahertz, China.
Corresponding Authors:  LanJu Liang, DeQuan Wei     E-mail:  lianglanju123@163.com;13561121758@163.com

Cite this article: 

MaoSheng Yang(杨茂生), LanJu Liang(梁兰菊), DeQuan Wei(韦德泉), Zhang Zhang(张璋), Xin Yan(闫昕), Meng Wang(王猛), JianQuan Yao(姚建铨) Dynamically tunable terahertz passband filter based on metamaterials integrated with a graphene middle layer 2018 Chin. Phys. B 27 098101

[1] Federico Valmorra G S, Maissen C, Fu W, Schönenberger C, Choi J W, Park H G, Beck M and Faist J 2013 Nano Lett. 13 3193
[2] Li C, Zhou Q, Shi Y, Yang Z, Shi L and Zhang C 2017 Opt. Commun. 391 77
[3] Fu Y N, Zhang J Y, Qun X, Li Y H and Yu J Y 2017 Acta Phys. Sin. 66 180701 (in Chinese)
[4] Liu J F, Zhou Q L, Shi Y L, Li L, Zhao D M and Zhang C L 2012 Acta Phys. Sin. 61 048101 (in Chinese)
[5] Zhi H L, Zhou T, Cao J and Tao H 2017 IEEE 30th International Conference on 974
[6] Peter F and Siegel H 2004 IEEE T. Microw. Theory 52 2438
[7] Walther M, Plochocka P, Fischer B, Helm H and Uhd Jepsen P 2002 Biopolymers 67 310
[8] Jiang L H, Wang F, Liang R, Wei Z, Meng H, Dong H, Cen H, Wang L and Qin S 2017 Plasmonics 13 525
[9] Withayachumnankul W and Abbott D 2009 IEEE Photon. J. 1 99
[10] Oliver Paul C I, Reinhard B, Remigius, Zengerle and Beigang R 2008 Opt. Exp. 16 6736
[11] Chen H T, Taylor A J and Yu N 2016 Rep. Prog. Phys. 79 076401
[12] Shen X P, Cui T J and Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese)
[13] Wang Z Y, Qiu J P, Chen H, Mo J J and Yu F X 2017 Chin. Phys. B 26 094207
[14] Guo J J, Huang W X and M S 2017 Chin. Phys. B 26 124211
[15] Nikolaenko A E, Papasimakis N, Atmatzakis E, Luo Z, Shen Z X, De Angelis F, Boden S A, Di Fabrizio E and Zheludev N I 2012 Appl. Phys. Lett. 100 181109
[16] Ou, J Y, Plum E, Jiang L and Zheludev N I 2011 Nano Lett. 11 2142
[17] Yeh S G, Monorchio A, Prati E, Costa F, Huang T Y and Yen T J 2012 Opt. Exp. 20 7580
[18] Li P, Hu F, Wang Z, Jiang W, Wang Y E and Chen Y 2017 Opt. Commun. 392 263
[19] Wang X Z, Zhu H H and Liu Z G 2017 Opt. Commun. 396 236
[20] Liang L J, Jin B B and W U J B 2013 Sci. Chin. Inform Sci. 56 120412
[21] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, Brink and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[22] Mousavi S H, Kholmanov I, Alici K B, Purtseladze D, Arju N, Tatar K, Fozdar D Y, Suk J W, Hao Y, Khanikaev A B, Ruoff R S and Shvets G 2013 Nano Lett. 13 1111
[23] Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L and Xing H G 2012 Nat. Commun. 3 780
[24] Liang L, Jin B, Wu J, Huang Y, Ye Z, Huang X, Zhou D, Wang G, Jia X, Lu H, Kang L, Xu W, Chen J and Wu P 2013 Appl. Phys. B 113 285
[25] Chiang Y J, Yang C S, Yang Y H, Pan C L and Yen T J 2011 Appl. Phys. Lett. 99 191909
[26] Kaleta A and Górnicki K 2010 Energy Convers Manag. 51 2967
[27] Menges, H O and Ertekin C 2006 J. Food Eng. 77 119
[28] Dinani S T, Hamdami N and Shahedi M 2014 Energy Conversion Managem. 86 70
[29] Yang M S and Ding C J 2016 Springerplus 5 909
[30] Ding C, Lu J and Song Z 2015 PLoS One 10 0124077
[31] Shahhoseini R, Ghorbani H and Karimi S R 2013 Dry Technol. 31 1020
[32] Pendry J B, Robbins D J and Stewart W J 1999 IEEE T. Microw. Theory 47 2075
[33] Godfrey G, Andrii I and Horing N J M 2015 Phys. Rev. B 91 235416
[34] Yan P T, Zou H, Koschny T and Soukoulis M 2012 Opt. Express 20 12198
[35] Correas-Serrano D, Perruisseau-Carrier J and Alvarez-Melcon A 2014 IEEE T. Nano. Technol. 13 1145
[36] Hanson G W 2008 J. Appl. Phys. 103 1
[37] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[7] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[8] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[9] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[10] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[15] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
No Suggested Reading articles found!