Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097203    DOI: 10.1088/1674-1056/27/9/097203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modeling capacitance–voltage characteristic of TiW/p-InP Schottky barrier diode

Yi-Dong Wang(王一栋), Jun Chen(陈俊)
School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
Abstract  

The capacitance-voltage (C-V) characteristic of the TiW/p-InP Schottky barrier diodes (SBDs) is analyzed considering the effects of the interface state (Nss), series resistance (Rs), and deep level defects. The C-V of the Schottky contact is modeled based on the physical mechanism of the interfacial state and series resistance effect. The fitting coefficients α and β are used to reflect the Nss and Rs on the C-V characteristics, respectively. The α decreases with the increase of frequency, while β increases with the increase of frequency. The capacitance increases with the increase of α and the decrease of β. From our model, the peak capacitance and its position can be estimated. The experimental value is found to be larger than the calculated one at the lower voltage. This phenomenon can be explained by the effect of deep level defects.

Keywords:  Schottky barrier diode      interface state      series resistance  
Received:  21 April 2018      Revised:  30 June 2018      Accepted manuscript online: 
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61774108) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.

Corresponding Authors:  Jun Chen     E-mail:  junchen@suda.edu.cn

Cite this article: 

Yi-Dong Wang(王一栋), Jun Chen(陈俊) Modeling capacitance–voltage characteristic of TiW/p-InP Schottky barrier diode 2018 Chin. Phys. B 27 097203

[1] Li C, Xue C L, Li C B, Liu Z, Cheng B W and Wang Q M 2013 Chin. Phys. B 22 118503
[2] Chen Q T, Huang Y Q, Fei J R, Duan X F, Liu K, Liu F, Kang C, Wang J C, Fang W J and Ren X M 2015 Chin. Phys. B 24 108506
[3] Neamen Donald A 1992 Semiconductor Physics and Devices (Irwin, Boston, MA)
[4] Wilmsen C 1985 Physics and Chemistry of Ⅲ-V Compound Semiconductor Interfaces (New York:Plenum Press)
[5] Holloway P H and McGuire G E 1995 Handbook of Compound Semiconductors:Growth, Processing, Characterization, and Device (Noyes, New Jersey, NJ)
[6] Jayant Baliga B 2005 SiC Power Devices (Singapore:World Scientific Publishing Co. Pte. Ltd)
[7] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (3rd Edn.) (New York:Wiley)
[8] Chen J, Wang Q, Lv J, Tang H and Li X 2015 J. Alloys Compd. 649 1220
[9] Wang Q, Chen J, Tang H and Li X 2016 Semicond. Sci. Technol. 31 065023
[10] Uslu H, Altındal S, Aydemir U, Dö kmeb I and Afandiyeva I M 2010 J. Alloys Compd. 503 96
[11] Afandiyeva I M, Demirezen S and Altındal S 2013 J. Alloys. Compd. 552 423
[12] Yokoyama N, Ohnishi T, Odani K, Onodera H and Abe M 1982 IEEE Trans. Electron. Devices 29 1541
[13] Reddy V, Silpa D, Yun H and Choi C 2014 Superlattices and Microstructures 71 134
[14] Karatas S and Turut A 2010 Microelectron. Reliab. 50 351
[15] Kaya A, Sevgili O and Altındal S 2014 Int. J. Mod. Phys. B 28 1450104
[16] Gupta S K, Shankar B, Taube W R, Singh J and Akhtar 2014 J. Physica B 434 44
[17] Chekir F, Barret C and Vapaille A 1983 J. Appl. Phys. 54 6474
[18] Arslan E, Butun S, Safak Y, Uslu H, Tascıoglu I, Altındal S and Ozbay E 2011 Microelectron. Reliab. 51 370
[19] Ayyildiz E, Nuholu C and Turut A 2002 J. Electron. Mater. 31 119
[20] Sharma A, Kumar P, Singh B, Chaudhuri S R and Ghosh S 2011 Appl. Phys. Lett. 99 023301
[21] Schroder D K 2006 Semiconductor Material and Device Characterization (Hoboken:John Wiley & Sons, Inc)
[22] Kumar V, Kaminski N, Maan A S and Akhtar J 2016 Phys.Status. Solidi. A 213 193
[23] Korucu D, Turut A, Turan R and Altindal S 2013 Mater. Sci. Semicond. Process. 16 344
[24] Demirezen S, ÖzavcıE and Altındal S 2014 Mater. Sci. Semicond. Process. 23 1
[25] Bilkan Ç, Gümüş A and Altındal Ş 2015 Mater. Sci. Semicond. Process. 39 484
[26] Altındal S and Uslu H 2011 J. Appl. Phys. 109 074503
[27] VIlchenko V, Marin V V, Lin S D, Panarin K Y, Buyanin A A and Tretyak O V 2008 J. Phys. D:Appl. Phys. 41 235107
[28] Lin S D, Ilchenko V V, Marin V V, Panarin K Y, Buyanin A A and Tretyak O V 2008 Appl. Phys. Lett. 93 103103
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[3] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[4] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[5] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[6] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[7] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[8] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[9] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[10] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[11] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[12] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[13] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[14] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[15] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
No Suggested Reading articles found!