Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 087302    DOI: 10.1088/1674-1056/27/8/087302
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Giant Goos-Hänchen shifts of waveguide coupled long-range surface plasmon resonance mode

Qi You(游琪), Jia-Qi Zhu(祝家齐), Jun Guo(郭珺), Lei-Ming Wu(吴雷明), Xiao-Yu Dai(戴小玉), Yuan-Jiang Xiang(项元江)
SZU-NUS Collaborative Innovation Center for Optoelectronic Science, Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Abstract  

A hybrid structure based on a planar waveguide (PWG) mode coupling a long-range surface plasmon resonance (LRSPR) mode is proposed to enhance the GH shift. Both the PWG mode and LRSPR mode can be in strong resonance, and these two modes can be coupled together due to the normal-mode splitting. The largest GH shift of PWG-coupled LRSPR structure is 4156 times that of the incident beam, which is 23 times and 3.6 times that of the surface plasmon resonance (SPR) structure and the LRSPR structure, respectively. As a GH shift sensor, the highest sensitivity of 4.68×107λ is realized in the coupled structure. Compared with the sensitivity of the traditional SPR structure, the sensitivity of our structure is increased by more than 2 orders, which theoretically indicates that the proposed configuration can be applied to the field of high-sensitivity sensors in the future.

Keywords:  Goos-Hänchen(GH)shift      planar waveguide(PWG)      long-range surface plasmon polartons(LRSPPs)  
Received:  26 April 2018      Revised:  16 May 2018      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61505111 and 11604216), the China Postdoctoral Science Foundation (Grant No. 2016M600667), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2016B050501005), the Fund from the Educational Commission of Guangdong Province, China (Grant No. 2016KCXTD006), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313549).

Corresponding Authors:  Yuan-Jiang Xiang     E-mail:  xiangyuanjiang@126.com

Cite this article: 

Qi You(游琪), Jia-Qi Zhu(祝家齐), Jun Guo(郭珺), Lei-Ming Wu(吴雷明), Xiao-Yu Dai(戴小玉), Yuan-Jiang Xiang(项元江) Giant Goos-Hänchen shifts of waveguide coupled long-range surface plasmon resonance mode 2018 Chin. Phys. B 27 087302

[1] Goos F and Hänchen H 1947 Ann. Phys. 1 333
[2] Goos F and Lindberg-Hanchen H 1958 Ann. Phys. 5 251
[3] Artmann K 1948 Ann. Phys. 2 87
[4] Luo C Y, Dai X Y, Xiang Y J and Wen S C 2015 IEEE. Photon. J. 7 6100310
[5] Jiang L Y, Wang Q K and Xiang Y J 2013 IEEE. Photon. J. 5 6500108
[6] Nie Y Y, Li Y H, Wu Z J, Wang X P, Yuan W and Sang M S 2014 Opt. Express 22 8943
[7] Tang T T, Li C Y, Luo L, Zhang Y F and Li J 2016 Appl. Phys. B 122 127
[8] Jiang L Y, Wu J P, Dai X Y and Xiang Y J 2014 Optik 125 7025
[9] Dai X Y, Wen S C and Xiang Y J 2008 Acta Phys. Sin. 57 186 (in Chinese)
[10] Xiang Y Y, Wen S C and Tang K S 2006 Acta Phys. Sin. 55 2714 (in Chinese)
[11] Zhuang B X, Guo J, Xiang Y J, Dai X Y and Wen S C 2013 Acta Phys. Sin. 62 054207 (in Chinese)
[12] Yin X, Hesselink L and Liu Z 2004 Appl. Phys. Lett. 85 372
[13] Liu C P, Zhu X L, Zhang J X, Xu J, Wang Y L and Yu D P 2016 Chin. Phys. Lett. 33 087303
[14] Zhang X, Shi L, Li J, Xia Y J and Zhou S M 2017 Chin. Phys. B 26 117801
[15] Chen J N, Chen R K and Duan J H 2017 Chin. Phys. B 26 117802
[16] Sui G R, Cheng L and Chen L 2011 Opt. Commun. 284 1553
[17] Liu X B, Cao Z Q, Zhu P F, Shen Q S and Liu X M 2006 Phys. Rev. E 73 056617
[18] Liu T, Cao X Y, Gao J, Zheng Q R and Li W Q 2012 Acta Phys. Sin. 61 184101 (in Chinese)
[19] Zhang Z D, Zhao Y N, Lu D, Xiong Z H and Zhang Z Y 2012 Acta Phys. Sin. 61 187301 (in Chinese)
[20] Cai Y J, Li M, Xiong X, Yu L, Ren X F, Guo G P and Guo G C 2015 Chin. Phys. Lett. 32 107305
[21] Hayashi S, Nesterenko D V and Sekkat Z 2015 Appl. Phys. Express 8 022201
[22] Salamon Z, Macleod H A and Tollin G 1997 Biophys. J. 73 2791
[23] Xiang Y J, Dai X Y, Guo J, Zhang H and Tang D Y 2015 Sci. Rep. 4 5483
[24] Khitrova G, Gibbs H M, Jahnke F, Kira M and Koch S W 1999 Mod. Phys. 71 1591
[25] Ta'Eed V G, Lamont M R E, Moss D J, Eggleton B J, Choi D Y, Madden S and Luther-Davies B 2006 Opt. Express 14 11242
[26] Wark A W, Lee H J and Corn R M 2005 Anal. Chem. 77 3904
[27] Wang Y, Brunsen A, Jonas U, Dostalek J and Knoll W 2009 Anal. Chem. 81 9625
[28] Maharana P K and Jha R 2012 Sens. Actuators B-Chem. 169 161
[29] Jha R and Sharma A K 2009 J. Opt. A-Pure Appl. Opt. 11 045502
[30] Maharana P K, Srivastava T and Jha R 2014 Plasmonics 9 1113
[31] Verma R, Gupta B D and Jha R 2011 Sens. Actuators B-Chem. 160 623
[32] Zeng S W, Hu S Y and Xia J 2015 Sens. Actuators B-Chem. 207 801
[33] Sharma A K and Gupta B D 2007 J. Appl. Phys. 101 093111
[34] Wu L M, Guo J and Xu H L 2016 Photon. Res. 4 262
[35] Wu L, Chu H S and Koh W S 2010 Opt. Express 18 14395
[36] Gupta B and Sharma A K 2005 Sens. Actuators B-Chem. 107 40
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[3] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[4] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[5] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[6] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[7] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[8] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[9] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[10] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[11] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[12] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[13] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[14] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[15] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
No Suggested Reading articles found!