Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114101    DOI: 10.1088/1674-1056/ac6015
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection

Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健)
College of Electronic and Information Engineering, Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract  An ultra-wideband bandpass filter (BPF) with a wide out-of-band rejection based on a surface plasmonic waveguide (SPW) slotline with ring grooves is designed and analyzed. A paired microstrip-to-slotline transition is designed for quasi-TEM to TM mode conversion by using a microstrip line with a circular pad and the slotline with the same circular slot. The mode conversion between the TM and the surface plasmon polariton (SPP) mode is realized by using a gradient slotline with ring grooves and an impedance matching technique. The upper cut-off frequencies of the passband can be adjusted by using these proposed SPP units, while the lower frequencies of the passband are created by using the microstrip-to-slotline transitions to give an ultra-wideband BPF. The dispersion curves of SPP units, electric field distribution, and the transmission spectra of the proposed ultra-wideband bandpass filter are all calculated and analyzed by the finite-difference time-domain (FDTD) method. The simulated results show that the presented filter has good performance including a wide 3-dB bandwidth of 149% from 0.57 GHz to 3.93 GHz, an extremely wide 40-dB upper-band rejection from 4.2 GHz to 18.5 GHz, and low loss and high selectivity in the passband. To prove the design validity, a prototype of the BPF has been manufactured and measured, showing a reasonable agreement with simulation results. The unique features of the proposed BPF may make it applicable for integrated circuit and plasmonic devices in microwave or THz frequency ranges.
Keywords:  surface plasmonic waveguide (SPW)      bandpass filter      out-of-band rejection      ultra-wideband  
Received:  07 December 2021      Revised:  13 February 2022      Accepted manuscript online:  23 March 2022
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  84.40.Dc (Microwave circuits)  
  84.40.Az (Waveguides, transmission lines, striplines)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2141232, 62071221, and 62071442) and the Aeronautical Science Foundation of China (Grant No. 2019ZA037001).
Corresponding Authors:  Shao-Bin Liu     E-mail:  plrg@nuaa.edu.cn,lsb@nuaa.edu.cn

Cite this article: 

Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健) Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection 2022 Chin. Phys. B 31 114101

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Wang X X, Zhu J K, Tong H, Yang X D, Wu X X, Pang Z Y, Yang H and Qi Y P 2019 Chin. Phys. B 28 044201
[3] Li Z Y, Yi Y T, Xu D Y, Yang H, Yi Z, Chen X F, Yi Y G, Zhang J G and Wu P H 2021 Chin. Phys. B 30 098102
[4] Pendry J B, Martín-Moreno L and Garcia-Vidal F J 2004 Science 305 847
[5] Hibbins A P, Evans B R and Sambles J R 2005 Science 308 670
[6] Nagpal P, Lindquist N C, Oh S H and Norris D J 2009 Science 325 594
[7] Williams C R, Andrews S R, Maier S A, Fernández-Domínguez A I, Martín-Moreno L and García-Vidal F J 2008 Nat. Photonics 2 175
[8] Gan Q Q, Fu Z, Ding Y J and Bartoil J 2008 Phys. Rev. Lett. 100 256803
[9] Tian L L, Chen Y, Liu J L, Guo K, Zhou K Y, Gao Y and Liu S T 2016 Chin. Phys. B 25 078401
[10] Shen X, Cui T J, Martin-Cano D F and Garcia-Vidal J 2013 Proc. Natl. Acad. Sci. USA 110 40
[11] Ma H F, Shen X P, Cheng Q, Jiang W X and Cui T J 2014 Laser Photonics Rev. 8 146
[12] Tang W X, Zhang H C, Ma H F, Jiang W X and Cui T J 2019 Adv. Opt. Mater. 7 1800421
[13] Xu Z, Liu S, Li S, Zhao H, Liu L and Yin X X 2018 Appl. Phys. Express 11 042002
[14] Guan D F, You P, Zhang Q F, Yang Z B, Liu H W and Yong S W 2018 IEEE Trans. Microw. Theory Techn. 66 2946
[15] Liu X, Zhu L and Feng Y 2016 Chin. Phys. B 25 034101
[16] Tian L L, Liu J L, Zhou K Y, Gao Y and Liu S T 2017 Chin. Phys. B 26 078401
[17] Zhang D, Zhang K, Wu Q, Dai R and Sha X 2018 Opt. Lett. 43 3176
[18] Jidi L, Cao X, Gao J, Li S, Yang H H and Li T 2020 Appl. Phys. Express 13 084004
[19] Zhang Q, Zhang H C, Wu H and Cui T J 2015 Sci. Rep. 5 16531
[20] Wang J, Zhao L, Zhang C H, Shen X P and Cui T J 2019 Opt. Lett. 44 3374
[21] Wang M, Sun S, Ma H F and Cui T J 2019 IEEE Trans. Microw. Theory Techn. 68 732
[22] Lan S W, Weng M H, Huang C Y and Chang S J 2016 IEEE Microw. Wireless Compon. Lett. 26 392
[23] Ying J G, Kai D X and Tang X 2018 Opt. Express 26 10589
[24] Chen P, Li L P, Yang K and Cheng Q 2018 IEEE Microw. Wireless Compon. Lett. 28 984
[1] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[2] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[3] Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation
Ming-En Tian(田明恩), Zhi-He Long(龙之河), You Lan(蓝友), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2021, 30(5): 058503.
[4] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[5] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[6] Compact wide stopband superconducting bandpass filter using modified spiral resonators with interdigital structure
Di Wu(吴荻), Bin Wei(魏斌), Bo Li(李博), Xu-Bo Guo(郭旭波), Xin-Xiang Lu(卢新祥), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068502.
[7] Compact high-order quint-band superconducting band-pass filter
Di Wu(吴荻), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xin-Xiang Lu(卢新祥), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068503.
[8] Ultra-wideband RCS reduction using novel configured chessboard metasurface
Ya-Qiang Zhuang(庄亚强), Guang-Ming Wang(王光明), He-Xiu Xu(许河秀). Chin. Phys. B, 2017, 26(5): 054101.
[9] Design and theoretical study of a polarization-insensitive multiband terahertz metamaterial bandpass filter
Hai-Peng Li(李海鹏), Wen-Yue Fu(付文悦), Xiao-Peng Shen(沈晓鹏), Kui Han(韩奎), Wei-Hua Wang(王伟华). Chin. Phys. B, 2017, 26(12): 127801.
[10] Compact superconducting single-and dual-band filter design using multimode stepped-impedance resonator
Xiang Wang(王翔), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(12): 128501.
[11] High-temperature superconducting filter using self-embedding asymmetric stepped impedance resonator with wide stopband performance and miniaturized size
Dan Wang(王丹), Bin Wei(魏斌), Yong Heng(衡勇), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(10): 108502.
[12] Ultra-wideband reflective polarization converter based on anisotropic metasurface
Jia-Liang Wu(吴家梁), Bao-Qin Lin(林宝勤), Xin-Yu Da(达新宇). Chin. Phys. B, 2016, 25(8): 088101.
[13] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[14] Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces
Xi Gao(高喜), Xing-Yang Yu(余行阳), Wei-Ping Cao(曹卫平), Yan-Nan Jiang(姜彦南), Xin-Hua Yu(于新华). Chin. Phys. B, 2016, 25(12): 128102.
[15] An ultra-wideband pattern reconfigurable antenna based on graphene coating
YanNan Jiang(姜彦南), Rui Yuan(袁锐), Xi Gao(高喜), Jiao Wang(王娇), SiMin Li(李思敏), Yi-Yu Lin(林诒玉). Chin. Phys. B, 2016, 25(11): 118402.
No Suggested Reading articles found!