Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084702    DOI: 10.1088/1674-1056/27/8/084702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Walking of spider on water surface studied from its leg shadows

Yelong Zheng(郑叶龙)1, Hongyu Lu(鲁鸿宇)1, Jile Jiang(蒋继乐)2, Dashuai Tao(陶大帅)1, Wei Yin(尹维)1, Yu Tian(田煜)1
1 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
2 Division of Mechanics and Acoustics, National Institute of Metrology, Beijing 100029, China
Abstract  Different from sculling forward of water striders with their hairy water-repellent legs, water spiders walked very quickly on water surfaces. By using a shadow method, the walking of water spiders had been studied. The three-dimensional trajectories and the supporting forces of water spider legs during walking forward were achieved. Results showed that the leg movement could be divided into three phases:slap, stroke, and retrieve. Employing an effective strategy to improving walking efficiency, the sculling legs supported most of its body weight while other legs were lifted to reduce the lateral water resistance, which was similar to the strategy of water striders. These findings could help guiding the design of water walking robots with high efficiency.
Keywords:  water spider legs      shadow      walking forward      archimedes'      principle  
Received:  05 December 2017      Revised:  08 April 2018      Accepted manuscript online: 
PACS:  47.55.df (Breakup and coalescence)  
  47.55.D- (Drops and bubbles)  
  68.03.-g (Gas-liquid and vacuum-liquid interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51323006 and 51425502) and the Tribology Science Fund of State Key Laboratory of Tribology (Grant No. SKLTKF17B18).
Corresponding Authors:  Yu Tian     E-mail:  tianyu@tsinghua.edu.cn

Cite this article: 

Yelong Zheng(郑叶龙), Hongyu Lu(鲁鸿宇), Jile Jiang(蒋继乐), Dashuai Tao(陶大帅), Wei Yin(尹维), Yu Tian(田煜) Walking of spider on water surface studied from its leg shadows 2018 Chin. Phys. B 27 084702

[1] Gao X and Jiang L 2004 Nature 432 36
[2] Hu D L, Chan B and Bush J W M 2003 Nature 424 663
[3] Hu D L and Bush J W M 2010 J. Fluid Mech. 644 5
[4] Bush J W M and Hu D L 2006 Ann. Rev. Fluid Mech. 38 339
[5] Koh J S, et al. 2015 Science 349 517
[6] Feng C, Chao Z, Hao Y C and Hirotaka S 2016 J. R. Soc. Interface 13 20160060
[7] Song Y S and Sitti M 2007 IEEE T. Robot. 23 578
[8] Su F F, Liu W Y, Xu H K Deng H, Li Z Y, Tian Y, Zhu X B, Zheng D N, Li L and Shi P Z 2017 Chin. Phys. B 26 060308
[9] Luo W, Zhang M, Zhou P and Yin H C 2010 Chin. Phys. B 19 084102
[10] Suter R B 2013 J. Arachnol. 41 93
[11] Lo L L 1983 J. Fluid Mech. 132 65
[12] Vella D, Lee D and Kim H Y 2006 Langmuir 22 5979
[13] Keller J B 1998 Phys. Fluids 10 3009
[14] Suter R B, Stratton G and Miller P 2003 J. Arachnol. 31 428
[15] Gao P and Feng J J 2011 J. Fluid Mech. 668 363
[16] Song Y S, Suhr S H and Sitti M 2006 Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida, USA, pp. 2303-2310
[17] Liu Z Y, Yin W, Tao D S and Tian Y 2015 Biotribology 1 11
[18] Yin W, Zheng Y L, Lu H Y, Zhang X J and Tian Y 2016 Appl. Phys. Lett. 109 163701
[19] Zheng Y L, Lu H Y, Yin W, Tao D S, Shi L C and Tian Y 2016 Langmuir 32 10522
[20] Wang L X and Zhou Q 2016 J. Bionic. Eng. 13 373
[21] Dong C L, Yuan C Q, Bai X Q, Yan X P and Peng Z X 2014 RSC Adv. 4 19034
[22] Dong C L, Yuan C Q, Li J and Yan X P 2013 Sci. Chin. Technol. Sci. 56 3017
[23] Zhang G L, Xie G X, Si L N, Wen S Z and Guo D 2017 ACS Appl. Mater. Inter. 9 38146
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
No Suggested Reading articles found!