Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 078201    DOI: 10.1088/1674-1056/27/7/078201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte

Jia-Yue Peng(彭佳悦)1,2, Jie Huang(黄杰)3, Wen-Jun Li(李文俊)4, Yi Wang(王怡)1,2, Xiqian Yu(禹习谦)1, Yongsheng Hu(胡勇胜)1, Liquan Chen(陈立泉)1, Hong Li(李泓)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing WeLion New Energy Technology Co., LTD, Beijing 102402, China;
4 Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Abstract  

A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6×10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solid-state electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.

Keywords:  quasi-solid-state electrolyte      Li-O2 battery  
Received:  01 April 2018      Revised:  04 May 2018      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Gj (Electrolytes)  
  78.55.Kz (Solid organic materials)  
Fund: 

Project supported by the National Key R&D Program of China (Grant Nos. 2016YFB0100300 and 2016YFB0100100), the National Basic Research Program of China (Grant No. 2014CB932300), the Beijing Municipal Science & Technology Commission, China (Grant No. D171100005517001), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000), and the National Natural Science Foundation of China (Grant No. 51502334).

Corresponding Authors:  Xiqian Yu, Hong Li     E-mail:  xyu@iphy.ac.cn;hli@iphy.ac.cn

Cite this article: 

Jia-Yue Peng(彭佳悦), Jie Huang(黄杰), Wen-Jun Li(李文俊), Yi Wang(王怡), Xiqian Yu(禹习谦), Yongsheng Hu(胡勇胜), Liquan Chen(陈立泉), Hong Li(李泓) A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte 2018 Chin. Phys. B 27 078201

[1] Bruce P G, Freunberger S A, Hardwick L J and Tarascon J M 2012 Nat. Mater. 11 19
[2] Girishkumar G, Mccloskey B, Luntz A C, Swanson S and Wilcke W 2010 J. Phys. Chem. Lett. 1 2193
[3] Li F, Kitaura H and Zhou H 2013 Energy Environ. Sci. 6 2302
[4] Wang X, Zhu D, Song M, Cai S, Zhang L and Chen Y 2014 ACS Appl. Mater. Interfaces 6 11204
[5] Kitaura H and Zhou H 2015 Sci. Rep. 5 13271
[6] Wu S, Yi J, Zhu K, Bai S, Liu Y, Qiao Y, et al. 2017 Adv. Energy Mater. 7 1601759
[7] Yi J, Liu Y, Qiao Y, He P and Zhou H 2017 ACS Energy Lett. 2 1378
[8] Yang X Y, Xu J J, Chang Z W, et al. 2018 Adv. Energy Mater. 1702242
[9] Shimano S, Haoshen Zhou A and Honma I 2007 Chem. Mater. 19 5216
[10] Ito S, Unemoto A, Ogawa H, Tomai T and Honma I 2012 J. Power Sources 208 271
[11] Matsuo T, Gambe Y, Sun Y and Honma I 2015 Sci. Rep. 4 6084
[12] Unemoto A, Ogawa H, Gambe Y and Honma I 2014 Electrochim. Acta 125 386
[13] Mitchell R R, Gallant B M, Yang S H and Thompson C V 2013 J. Phys. Chem. Lett. 4 1060
[14] Griffith L D, Sleightholme A E S, Mansfield J F, Siegel D J and Monroe C W 2015 ACS Appl. Mater. Interfaces 7 7670
[15] Aetukuri N B, McCloskey B D, García J M, Krupp L E, Viswanathan V and Luntz A C 2015 Nat. Chem. 7 50
[16] Guéguen A, Novák P and Berg J 2016 J. Electrochem. Soc. 163 A2545
[17] Mccloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelshoj J S, et al. 2012 J. Phys. Chem. Lett. 3 997
[1] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[2] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[3] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[4] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[5] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[6] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[7] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[8] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[9] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[10] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[11] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[12] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[13] DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery
Qi Liu(刘琦, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣). Chin. Phys. B, 2021, 30(3): 038203.
[14] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[15] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
No Suggested Reading articles found!